【題目】某校高一共有10個(gè)班,編號(hào)1至10,某項(xiàng)調(diào)查要從中抽取三個(gè)班作為樣本,現(xiàn)用抽簽法抽取樣本,每次抽取一個(gè)號(hào)碼,共抽3次,設(shè)五班第一次抽到的可能性為a,第二次被抽到的可能性為b,則( )
A.a= ,b=
B.a= ,b=
C.a= ,b=
D.a= ,b=

【答案】C
【解析】由簡(jiǎn)單隨機(jī)抽樣的定義知,每個(gè)個(gè)體在每次抽取中都有相同的可能性被抽到,故五班在每次抽樣中被抽到的可能性都是 .
【考點(diǎn)精析】利用簡(jiǎn)單隨機(jī)抽樣對(duì)題目進(jìn)行判斷即可得到答案,需要熟知每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性.簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,游樂(lè)場(chǎng)中的摩天輪勻速逆時(shí)針旋轉(zhuǎn),每轉(zhuǎn)一圈需要6min,其中心O距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點(diǎn)P的起始位置在最低點(diǎn)處,在時(shí)刻t(min)時(shí)點(diǎn)P距離地面的高度為f(t)=Asin(ωt+φ)+h(A>0,ω>0,﹣π<φ<0,t≥0).
(Ⅰ)求f(t)的單調(diào)減區(qū)間;
(Ⅱ)求證:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】太極圖是由黑白兩個(gè)魚(yú)形紋組成的圖案,俗稱陰陽(yáng)魚(yú),太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)等分成兩部分的函數(shù)稱為圓煌一個(gè)“太極函數(shù)”下列有關(guān)說(shuō)法中:
①對(duì)圓O:x2+y2=1的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)f(x)=sinx+1是圓O:x2+(y﹣1)2=1的一個(gè)太極函數(shù);
③存在圓O,使得f(x)= 是圓O的太極函數(shù);
④直線(m+1)x﹣(2m+1)y﹣1=0所對(duì)應(yīng)的函數(shù)一定是圓O:(x﹣2)2+(y﹣1)2=R2(R>0)的太極函數(shù).
所有正確說(shuō)法的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 : x2+y2+Dx+Ey+3=0 ,圓 關(guān)于直線 x+y-1=0對(duì)稱,圓心在第二象限,半徑為
(1)求圓 的方程;
(2)已知不過(guò)原點(diǎn)的直線 l 與圓 相切,且在 軸、 軸上的截距相等,求直線 l 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲和乙參加有獎(jiǎng)競(jìng)猜闖關(guān)活動(dòng),活動(dòng)規(guī)則:①闖關(guān)過(guò)程中,若闖關(guān)成功則繼續(xù)答題;若沒(méi)通關(guān)則被淘汰;②每人最多闖3關(guān);③闖第一關(guān)得10萬(wàn)獎(jiǎng)金,闖第二關(guān)得20萬(wàn)獎(jiǎng)金,闖第三關(guān)得30萬(wàn)獎(jiǎng)金,一關(guān)都沒(méi)過(guò)則沒(méi)有獎(jiǎng)金.已知甲每次闖關(guān)成功的概率為 ,乙每次闖關(guān)成功的概率為
(1)設(shè)乙的獎(jiǎng)金為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)求甲恰好比乙多30萬(wàn)元獎(jiǎng)金的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:f(1)=1,且對(duì)于任意的x∈R,都有f′(x)< ,則不等式f(log2x)> 的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(x﹣1)=f(3﹣x)且方程f(x)=2x有兩個(gè)相等實(shí)數(shù)根 (Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[4m,4n],如果存在,求出符合條件的所有m,n的值,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集U=R,集合M={x||x﹣ | },P={x|﹣1≤x≤4},則(UM)∩P等于(
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3<x≤4}
D.{x|3≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=4x焦點(diǎn)為F,點(diǎn)D為其準(zhǔn)線與x軸的交點(diǎn),過(guò)點(diǎn)F的直線l與拋物線相交于A,B兩點(diǎn),則△DAB的面積S的取值范圍為(
A.[5,+∞)
B.[2,+∞)
C.[4,+∞)
D.[2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案