已知過函數(shù)f(x)=的圖象上一點B(1,b)的切線的斜率為-3.
(1)求a、b的值;
(2)求A的取值范圍,使不等式f(x)≤A-1987對于x∈[-1,4]恒成立;
令.是否存在一個實數(shù)t,使得當時,g(x)有最大值1?
(1)a=-3,b=-1;(2)存在一個a=,使g(x)在上有最大值1.
(1)=
依題意得k==3+2a=-3, ∴a=-3
,把B(1,b)代入得b=
∴a=-3,b=-1
(2)令=3x2-6x=0得x=0或x=2
∵f(0)=1,f(2)=23-3×22+1=-3
f(-1)=-3,f(4)=17
∴x∈[-1,4],-3≤f(x)≤17
要使f(x)≤A-1987對于x∈[-1,4]恒成立,則f(x)的最大值17≤A-1987
∴A≥2004.
已知g(x)=-
∴
∵0<x≤1,∴-3≤-3x2<0,
當t>3時,t-3x2>0, ∴g(x)在上為增函數(shù),
g(x)的最大值g(1)=t-1=1,得t=2(不合題意,舍去)
當0≤t≤3時,
令=0,得x=
列表如下:
x | (0, ) | ||
+ | 0 | - | |
g(x) | ↗ | 極大值 | ↘ |
g(x)在x=處取最大值-+t=1
∴t==<3
∴x=<1
③當t<0時,<0,∴g(x)在上為減函數(shù),
∴g(x)在上為增函數(shù),
∴存在一個a=,使g(x)在上有最大值1.
科目:高中數(shù)學 來源: 題型:
1 |
f(n) |
lim |
n→ |
1 |
Sn•f(n) |
A、1 | ||
B、
| ||
C、0 | ||
D、不存在 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
f(n) |
lim |
n→∞ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 | f(n) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com