設(shè)△的三邊為滿足
(Ⅰ)求的值;
(Ⅱ)求的取值范圍.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)由,即含有角又含有邊,像這一類題,可以利用正弦定理把邊化成角,也可利用余弦定理把角化成邊,本題兩種方法都行,若利用正弦定理把邊化成角,利用三角恒等變化,求出角,若利用余弦定理把角化成邊,利用代數(shù)恒等變化,找出邊之間的關(guān)系,從而求出角;(Ⅱ)求的取值范圍,首先利用降冪公式,與和角公式,利用互余,將它化為一個角的一個三角函數(shù),從而求出范圍.
試題解析:(Ⅰ),所以,所以,所以所以,即,所以,所以 
(Ⅱ)= =其中 因為, 所以 所以
考點:正余弦定理的運用,三角恒等變化,求三角函數(shù)值域,考查學生的運算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,(a+b+c)(a-b+c)=ac.
(Ⅰ)求B;
(Ⅱ)若sinAsinC=,求C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊分別為,設(shè)的面積,滿足
(Ⅰ)求角的大。
(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)f(x)=-sin(2x-).
(1)求函數(shù)f(x)的最大值和最小值;
(2)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,c=3,f()=,若sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中角的對邊分別為,且,
(1)求角的大。
(2)若,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三個內(nèi)角的對邊分別為,向量,,且的夾角為.
(1)求角的值;
(2)已知的面積,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的三個內(nèi)角所對的邊分別為,是銳角,且
(Ⅰ)求的度數(shù);
(Ⅱ)若,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點 D 為ΔABC 的邊 BC 上一點.且 BD ="2DC," =750,="30°,AD" =.
(I)求CD的長;
(II)求ΔABC的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象與軸相鄰兩交點的距離為。
(1)求的值;
(2)在△ABC中,分別是角A,B,C的對邊,且的取值范圍。

查看答案和解析>>

同步練習冊答案