【題目】已知圓經(jīng)過(guò),兩點(diǎn),且圓心在直線:上.
(1)求圓的方程;
(2)從軸上一個(gè)動(dòng)點(diǎn)向圓作切線,求切線長(zhǎng)的最小值及對(duì)應(yīng)切線方程.
【答案】(1);(2),.
【解析】
(1)設(shè)圓的方程為,根據(jù)題設(shè)條件,列出方程組,求得的值,即可求得圓的方程;
(2)利用圓的切線長(zhǎng)公式,結(jié)合直線與圓的位置關(guān)系,分類(lèi)討論,即可求解.
(1)設(shè)圓的方程為,
由圓經(jīng)過(guò),兩點(diǎn),
可得, ……① ,……②
又由圓心在直線上,即,……③
由①②③,可解得,,,
所以圓的方程為:,
即圓的方程.
(2)對(duì)于動(dòng)點(diǎn),設(shè)切線長(zhǎng)為,則,
所以要使得切線長(zhǎng)最短,必須且只需最小即可,
最小值為圓心到軸的距離,此時(shí)距離為2,
故切線長(zhǎng)的最小值為,當(dāng)切線長(zhǎng)取最小值時(shí),對(duì)應(yīng)點(diǎn)為原點(diǎn),
過(guò)原點(diǎn)的直線中,當(dāng)斜率不存在時(shí),不與圓相切;
當(dāng)斜率存在時(shí),設(shè)直線方程為,
代入圓:,可得,即,
令,解得,
故切線方程為,此時(shí)切線長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為數(shù)列的前項(xiàng)和,,,平面內(nèi)三個(gè)不共線的向量,,滿足,若點(diǎn),,在同一直線上,則______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面是菱形.
(1)若,求證:平面;
(2),分別是,上的點(diǎn),若平面,,求的值;
(3)若,平面平面,,判斷是否為等腰三角形?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列說(shuō)法:①方程表示的圖形是一個(gè)點(diǎn);②命題“若,則或”為真命題;③已知雙曲線的左右焦點(diǎn)分別為,,過(guò)右焦點(diǎn)被雙曲線截得的弦長(zhǎng)為4的直線有3條;④已知橢圓:上有兩點(diǎn),,若點(diǎn)是橢圓上任意一點(diǎn),且,直線,的斜率分別為,,則為定值;⑤已知命題“,滿足,”是真命題,則實(shí)數(shù).其中說(shuō)法正確的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2019·清遠(yuǎn)期末]一只紅鈴蟲(chóng)的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測(cè)數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點(diǎn)圖如下:
溫度 | 20 | 25 | 30 | 35 |
產(chǎn)卵數(shù)/個(gè) | 5 | 20 | 100 | 325 |
(1)根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));
(3)要使得產(chǎn)卵數(shù)不超過(guò)50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))
參考數(shù)據(jù):,,,,,,,,,,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,、分別是、的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)若這個(gè)三棱柱的底面是等邊三角形,側(cè)面都是正方形,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:
階梯級(jí)別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) |
從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:
(Ⅰ)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數(shù)X的分布列與數(shù)學(xué)期望;
(Ⅱ)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為一階的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面,,.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)若二面角的余弦值為,求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com