等比數(shù)列{an}的各項(xiàng)為正數(shù),且3是a5和a6的等比中項(xiàng),則a1a2…a10=( 。
A、39
B、310
C、311
D、312
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得 a5•a6=9,再根據(jù)a1a2…a10=(a5 •a6)5,計(jì)算求得結(jié)果.
解答: 解:∵等比數(shù)列{an}的各項(xiàng)為正數(shù),且3是a5和a6的等比中項(xiàng),
∴a5•a6=9,
則a1a2…a10=(a5 •a6)5=95=310,
故選:B.
點(diǎn)評:本題主要考查等比數(shù)列的定義和性質(zhì)應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=
4-x2
與直線y=k(x-2)+3有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ax+3 , (x≤1)
1
x
+1 ,  (x>1)
,滿足對任意定義域中的x1,x2(x1≠x2),[f(x1)-f(x2)](x1-x2)<0總成立,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)
B、[-1,0)
C、(-1,0)
D、(-1,+∞),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x=
π
6
是f(x)=
3
sinωx+cosωx的圖象的一條對稱軸,則ω可以是(  )
A、4B、8C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于R上可導(dǎo)的任意函數(shù)f(x),若滿足
2-x
f′(x)
≤0
,則必有( 。
A、f(1)+f(3)<2f(2)
B、f(1)+f(3)≤2f(2)
C、f(1)+f(3)>2f(2)
D、f(1)+f(3)≥2f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+2ax+1(-2<a<0),若x1<x2,且x1+x2=a,則(  )
A、f(x1)>f(x2
B、f(x1)<f(x2
C、f(x1)=f(x2
D、f(x1),f(x2)大小不確定
E、所以f(x1)>f(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從含有兩件正品和一件次品的三件產(chǎn)品中,每次隨機(jī)取一件,連結(jié)取兩次,每次取后都放回,則取出的兩件產(chǎn)品中恰有一件次的概率為(  )
A、
1
3
B、
4
9
C、
5
9
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的離心率等于3,且與橢圓
x2
16
+
y2
7
=1
有相同的焦點(diǎn),求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在點(diǎn)x0處可導(dǎo),試求下列各極限的值.
(1)
lim
△x→0
f(x0-△x)f(x0)
△x

(2)
lim
h→0
f(x0+h)-f(x0-h)
2h

查看答案和解析>>

同步練習(xí)冊答案