以坐標(biāo)原點O為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為:,曲線C2的參數(shù)方程為:,點N的極坐標(biāo)為
(Ⅰ)若M是曲線C1上的動點,求M到定點N的距離的最小值;
(Ⅱ)若曲線C1曲線C2有有兩個不同交點,求正數(shù)的取值范圍.
(Ⅰ)2;(Ⅱ)

試題分析:分別將極坐標(biāo)方程與參數(shù)方程轉(zhuǎn)化為普通方程,根據(jù)點與圓的幾何意義求的最小值;
根據(jù)曲線C1與曲線C2有有兩個不同交點的幾何意義,求正數(shù)的取值范圍.
試題解析:
解:(Ⅰ)在直角坐標(biāo)系xOy中,可得點,曲線為圓
圓心為,半徑為1,
=3,
的最小值為.                  (5分)
(Ⅱ)由已知,曲線為圓
曲線為圓,圓心為,半徑為t,
∵曲線與曲線有兩個不同交點,
,
解得,
∴正數(shù)t的取值范圍是.             (10分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,射線,各有一個交點.當(dāng)時,這兩個交點間的距離為,當(dāng)時,這兩個交點重合.
(Ⅰ)分別說明,是什么曲線,并求出a與b的值;
(Ⅱ)設(shè)當(dāng)時,,的交點分別為,當(dāng)時,,的交點分別為,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線(t為參數(shù))經(jīng)過橢圓為參數(shù))的左焦點F.
(Ⅰ)求m的值;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點,求|FA|·|FB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,若l:(t為參數(shù))過橢圓C:(φ為參數(shù))的右頂點,求常數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩曲線參數(shù)方程分別為(0≤θ<π)和(t∈R),它們的交點坐標(biāo)為             。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

參數(shù)方程為表示的曲線是(    ).
A.一條直線B.兩條直線C.一條射線D.兩條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是曲線上任意一點,則的最大值是 ( )
A.36B.6C.26D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點,Q都在曲線C:(β為參數(shù))上,對應(yīng)參數(shù)分別為
(0<<2π),M為PQ的中點。
(Ⅰ)求M的軌跡的參數(shù)方程
(Ⅱ)將M到坐標(biāo)原點的距離d表示為的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(1)(極坐標(biāo)與參數(shù)方程選做題)在極坐標(biāo)系中,和極軸垂直且相交的直線l與圓相交于兩點,若,則直線l的極坐標(biāo)方程為____________.
(2)(不等式選做題)不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是____________.

查看答案和解析>>

同步練習(xí)冊答案