【題目】已知函數(shù), , 為自然對(duì)數(shù)的底數(shù)).

(1)試討論函數(shù)的極值情況;

(2)證明:當(dāng)時(shí),總有.

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)求定義域內(nèi)的所有根;判斷的根左右兩側(cè)值的符號(hào)即可得結(jié)果;(2)當(dāng)時(shí), ,研究函數(shù)的單調(diào)性,兩次求導(dǎo),可證明內(nèi)為單調(diào)遞增函數(shù),進(jìn)而可得當(dāng)時(shí), ,即可得結(jié)果.

試題解析:(1)的定義域?yàn)?/span>,

.

①當(dāng)時(shí), ,故內(nèi)單調(diào)遞減, 無(wú)極值;

②當(dāng)時(shí),令,得;令,得.

處取得極大值,且極大值為, 無(wú)極小值.

(2)證法一:當(dāng)時(shí), .

設(shè)函數(shù) ,

.記

.

當(dāng)變化時(shí), 的變化情況如下表:

由上表可知,

,知

所以,

所以,即.

所以內(nèi)為單調(diào)遞增函數(shù).

所以當(dāng)時(shí), .

即當(dāng)時(shí), .

所以當(dāng)時(shí),總有.

證法二:當(dāng)時(shí), .

因?yàn)?/span>,故只需證.

當(dāng)時(shí), 成立;

當(dāng)時(shí), ,即證.

,則由,得.

內(nèi),

內(nèi),

所以.

故當(dāng)時(shí), 成立.

綜上得原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系中,曲線的參數(shù)方程為: 為參數(shù)).

(1)求曲線的直角坐標(biāo)方程與曲線的普通方程;

(2)若用代換曲線的普通方程中的得到曲線的方程,若分別是曲線和曲線上的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某測(cè)試團(tuán)隊(duì)為了研究“飲酒”對(duì)“駕車安全”的影響,隨機(jī)選取名駕駛員先后在無(wú)酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測(cè)試,測(cè)試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子停下所需要的距離),無(wú)酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表

停車距離(米)

頻數(shù)

26

8

2

/tr>

平均每毫升血液酒精含量 毫克

10

30

50

70

90

平均停車距離

30

50

60

70

90

已知表 數(shù)據(jù)的中位數(shù)估計(jì)值為,回答以下問(wèn)題.

(Ⅰ)求的值,并估計(jì)駕駛員無(wú)酒狀態(tài)下停車距離的平均數(shù);

(Ⅱ)根據(jù)最小二乘法,由表的數(shù)據(jù)計(jì)算關(guān)于的回歸方程

(Ⅲ)該測(cè)試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車的平均“停車距離”大于(Ⅰ)中無(wú)酒狀態(tài)下的停車距離平均數(shù)的倍,則認(rèn)定駕駛員是“醉駕”.請(qǐng)根據(jù)(Ⅱ)中的回歸方程,預(yù)測(cè)當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?

(附:回歸方程中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)2lnx(a為常數(shù)).
(1)若f(x)在(1,f(1))處的切線與直線2x+2y﹣3=0垂直.
(ⅰ)求實(shí)數(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x﹣1)的大;
(2)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無(wú)極值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知映射f:A→B,其中A=B=R,對(duì)應(yīng)法則f:x→y=( ,若對(duì)實(shí)數(shù)m∈B,在集合A中存在元素與之對(duì)應(yīng),則m的取值范圍是(
A.(﹣∞,2]
B.[2,+∞)
C.(2,+∞)
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 的垂心.

(1)求證:平面平面

(2)若,點(diǎn)在線段上,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),數(shù)列的前項(xiàng)和為,點(diǎn)圖象上,且的最小值為.

(1)求數(shù)列的通項(xiàng)公式;

(2)數(shù)列滿足,記數(shù)列的前項(xiàng)和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1 , y1),P2(x2 , y2)間的“L﹣距離”定義為|P1P2|=|x1﹣x2|+|y1﹣y2|.現(xiàn)將邊長(zhǎng)為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的斜率為k,0≤k≤ .求:當(dāng)|BC|取最大值時(shí),邊AB所在直線的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+b+1(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設(shè)f(x)=
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案