【題目】工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過(guò)10分鐘,如果前一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人.現(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別為,,,假設(shè),,互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.
(1)如果按甲最先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?
(2)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的數(shù)學(xué)期望達(dá)到最小.
【答案】(1),概率是一樣
(2)先派甲,再派乙,最后派丙時(shí)
【解析】
(1)分別求解甲在先,乙次之,丙最后的順序與甲在先,丙次之,乙最后的順序派人的概率再分析大小關(guān)系即可.
(2)列出對(duì)應(yīng)的分布列,再相減根據(jù)分析正負(fù)判斷數(shù)學(xué)期望最小時(shí)的情況即可.
解:(1)按甲在先,乙次之,丙最后的順序派人,任務(wù)能被完成的概率為;
若甲在先,丙次之,乙最后的順序派人,任務(wù)能被完成的概率為
;
發(fā)現(xiàn)任務(wù)能完成的概率是一樣.同理可以驗(yàn)證,不論如何改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率不發(fā)生變化.
(2)由題意得可能取值為1,2,3,
按甲在先,乙次之,丙最后的順序派人,所需派出的人員數(shù)目的分布列為:
1 | 2 | 3 | |
所以.
因?yàn)?/span>,且,
其他情況同理可得,所以要使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最小,只能先派甲、乙中的一人.
若先派甲,再派乙,最后派丙,則;
若先派乙,再派甲,最后派丙,則;
所以
所以先派甲,再派乙,最后派丙時(shí),均值(數(shù)學(xué)期望)達(dá)到最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的一個(gè)焦點(diǎn)為,離心率為.
(1)求的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)為外一點(diǎn),且到的兩條切線相互垂直,求的軌跡的方程;
(3)設(shè)的另一個(gè)焦點(diǎn)為,過(guò)上一點(diǎn)的切線與(2)所求軌跡交于點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,且.以所在直線為軸,中點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)已知定點(diǎn),不垂直于的動(dòng)直線與軌跡相交于兩點(diǎn),若直線 關(guān)于直線對(duì)稱,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)求證:在上存在唯一零點(diǎn);
(2)求證:有且僅有兩個(gè)不同的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的一個(gè)焦點(diǎn)為,離心率為.
(1)求的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)為外一點(diǎn),且到的兩條切線相互垂直,求的軌跡的方程;
(3)設(shè)的另一個(gè)焦點(diǎn)為,自直線:上任意一點(diǎn)引(2)所求軌跡的一條切線,切點(diǎn)為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十三屆全國(guó)人大二次會(huì)議于2019年3月5日在京召開(kāi)為了了解某校大學(xué)生對(duì)兩會(huì)的關(guān)注程度,學(xué)校媒體在開(kāi)幕后的第二天,從全校學(xué)生中隨機(jī)抽取了180人,對(duì)是否收看2019年兩會(huì)開(kāi)幕會(huì)情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
收看 | 沒(méi)收看 | |
男生 | 80 | 40 |
女生 | 30 | 30 |
(1)根據(jù)上表說(shuō)明,在犯錯(cuò)誤的概率不超過(guò)1%的前提下,能否認(rèn)為該校大學(xué)生收看開(kāi)幕會(huì)與性別有關(guān)?(計(jì)算結(jié)果精確到0.001)
(2)現(xiàn)從隨機(jī)抽取的學(xué)生中,采用按性別分層抽樣的方法選取6人,來(lái)參加2019年兩會(huì)的志愿者宣傳活動(dòng),若從這6人中隨機(jī)選取2人到各班級(jí)宣傳介紹,求恰好選到一名男生和一名女生的概率. 附,其中.
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,試求函數(shù)的零點(diǎn)個(gè)數(shù);
(2)當(dāng),對(duì),且滿足,試判斷與的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),求的零點(diǎn);
(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的一個(gè)焦點(diǎn)為,四條直線,所圍成的區(qū)域面積為.
(1)求的方程;
(2)設(shè)過(guò)的直線與交于不同的兩點(diǎn),設(shè)弦的中點(diǎn)為,且(為原點(diǎn)),求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com