【題目】閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的S= .
【答案】127
【解析】解:模擬執(zhí)行程序框圖,可得 k=0,S=1
滿足條件k≤12,S=1,k=2
滿足條件k≤12,S=7,k=4
滿足條件k≤12,S=19,k=6
滿足條件k≤12,S=37,k=8
滿足條件k≤12,S=61,k=10
滿足條件k≤12,S=91,k=12
滿足條件k≤12,S=127,k=14
不滿足條件k≤12,退出循環(huán),輸出S的值為127.
所以答案是:127.
【考點(diǎn)精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是兩條不同直線,,是兩個(gè)不同平面,則下列命題正確的是
A.若,垂直于同一平面,則與平行
B.若m,n平行于同一平面,則m與n平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 右支上非頂點(diǎn)的一點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若AF⊥FB,設(shè)∠ABF=θ且 ,則雙曲線離心率的取值范圍是( )
A.
B.
C.
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C1: + =1(a>b>0),長軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是 .
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過F作直線l交拋物線C2于A,B兩點(diǎn),過F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,現(xiàn)有一組數(shù)據(jù)(數(shù)據(jù)量較大),從中隨機(jī)抽取10個(gè),繪制所得的莖葉圖如圖所示,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.(莖葉圖中的數(shù)據(jù)均為小數(shù),其中莖為整數(shù)部分,葉為小數(shù)部分)
(Ⅰ)現(xiàn)從莖葉圖的數(shù)據(jù)中任取4個(gè)數(shù)據(jù)分別替換m的值,
求至少有2個(gè)數(shù)據(jù)使得函數(shù)f(x)沒有零點(diǎn)的概率;
(Ⅱ)以頻率估計(jì)概率,若從該組數(shù)據(jù)中隨機(jī)抽取4個(gè)數(shù)據(jù)分別替換m的值,記使得函數(shù)f(x)沒有零點(diǎn)的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為 (θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=4x++3,則對(duì)于y=f(x)在x<0時(shí),下列說法正確的是( 。
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com