【題目】已知的三頂點(diǎn)坐標(biāo)分別為,,.
(1)求的外接圓圓M的方程;
(2)已知?jiǎng)狱c(diǎn)P在直線(xiàn)上,過(guò)點(diǎn)P作圓M的兩條切線(xiàn)PE,PF,切點(diǎn)分別為E,F.
①記四邊形PEMF的面積分別為S,求S的最小值;
②證明直線(xiàn)EF恒過(guò)定點(diǎn).
【答案】(1) (2) ①4;②定點(diǎn),證明見(jiàn)解析
【解析】
(1)設(shè)圓M的方程為(x﹣a)2+(y﹣b)2=r2(r>0),分別代入A,B,C三點(diǎn),解方程可得a,b,r,可得所求圓M的方程;
(2)①由三角形的面積公式可得S=|PE||EM|=2|PE|,結(jié)合勾股定理和點(diǎn)到直線(xiàn)的距離公式,可得所求最小值;
②判斷四點(diǎn)P,E,M,F共圓,求得以PM為直徑的圓的方程和圓M方程,相減可得直線(xiàn)EF的方程,再由直線(xiàn)恒過(guò)定點(diǎn)的求法,可得所求定點(diǎn).
(1)設(shè)的外接圓圓M的標(biāo)準(zhǔn)方程為,根據(jù)題意有
故所求的圓M的方程為
(2)①,故當(dāng)最小時(shí),S最。
的最小值即為點(diǎn)到直線(xiàn)的距離
故
②由圓的切線(xiàn)性質(zhì)有,則,,,,四點(diǎn)共圓,該圓是以PM為直徑的圓,設(shè)圓心為點(diǎn)N.點(diǎn)P是直線(xiàn)上一動(dòng)點(diǎn),設(shè),則圓N的方程為
由消去,得直線(xiàn)EF的方程為
即,令得
故直線(xiàn)EF恒過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,對(duì)任意的正整數(shù)n,都有成立,記.
(1)求數(shù)列與數(shù)列的通項(xiàng)公式;
(2)求證:①對(duì)恒成立.②對(duì)恒成立,其中為數(shù)列的前n項(xiàng)和.
(3)記,為的前n項(xiàng)和,求證:對(duì)任意正整數(shù)n,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備將閑置的一直角三角形地塊開(kāi)發(fā)成公共綠地,圖中.設(shè)計(jì)時(shí)要求綠地部分(如圖中陰影部分所示)有公共綠地走道,且兩邊是兩個(gè)關(guān)于走道對(duì)稱(chēng)的三角形(和).現(xiàn)考慮方便和綠地最大化原則,要求點(diǎn)與點(diǎn)均不重合,落在邊上且不與端點(diǎn)重合,設(shè).
(1)若,求此時(shí)公共綠地的面積;
(2)為方便小區(qū)居民的行走,設(shè)計(jì)時(shí)要求的長(zhǎng)度最短,求此時(shí)綠地公共走道的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)從甲、乙兩個(gè)班中各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿(mǎn)分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績(jī)的眾數(shù)是83,乙班學(xué)生成績(jī)的平均數(shù)是86,則的值為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為的正方體中,,分別是和的中點(diǎn).
()求異面直線(xiàn)與所成角的余弦值.
()在棱上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn),過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)相切,設(shè)第一象限的切點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)若過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),圓是以線(xiàn)段為直徑的圓過(guò)點(diǎn),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(I)若,求實(shí)數(shù)的取值范圍;
(II)當(dāng)時(shí),討論方程在上的解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com