已知中心在坐標原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OAl的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.

(1)=1(2)直線l不存在

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓C:+=1的焦點在x軸上,左右頂點分別為A1,A,上頂點為B,拋物線C1,C2分別以A,B為焦點,其頂點均為坐標原點O,C1與C2相交于直線y=x上一點P.

(1)求橢圓C及拋物線C1,C2的方程.
(2)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M,N,已知點Q(-,0),求·的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心為原點,離心率,其一個焦點在拋物線的準線上,若拋物線與直線相切.
(1)求該橢圓的標準方程;
(2)當點在橢圓上運動時,設(shè)動點的運動軌跡為.若點滿足:,其中上的點,直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C與直線l1:y=-x的一個交點的橫坐標為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2與l1垂直,且與拋物線交于不同的兩點A,B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為橢圓的左右焦點,是坐標原點,過作垂直于軸的直線交橢圓于,設(shè) .
(1)證明: 成等比數(shù)列;
(2)若的坐標為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于、兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)已知圓Ox2y2=3的半徑等于橢圓E=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線lyx的距離為,點M是直線l與圓O的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).

(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定點和定直線,動點與定點的距離等于點到定直線的距離,記動點的軌跡為曲線.
(1)求曲線的方程.
(2)若以為圓心的圓與曲線交于、不同兩點,且線段是此圓的直徑時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓的離心率為軸被曲線截得的線段長等于的短軸長。軸的交點為,過坐標原點的直線相交于點,直線分別與相交于點。

(1)求的方程;
(2)求證:。
(3)記的面積分別為,若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線x2-y2=2若直線n的斜率為2 ,直線n與雙曲線相交于A、B兩點,線段AB的中點為P,
(1)求點P的坐標(x,y)滿足的方程(不要求寫出變量的取值范圍);
(2)過雙曲線的左焦點F1,作傾斜角為的直線m交雙曲線于M、N兩點,期中,F(xiàn)2是雙曲線的右焦點,求△F2MN的面積S關(guān)于傾斜角的表達式。

查看答案和解析>>

同步練習冊答案