設(shè)函數(shù),,已知為函數(shù)的極值點(diǎn)
(1)求函數(shù)在上的單調(diào)區(qū)間,并說明理由.
(2)若曲線在處的切線斜率為-4,且方程有兩個(gè)不相等的負(fù)實(shí)根,求實(shí)數(shù)的取值范圍.
(1)的單調(diào)增區(qū)間為和,的單調(diào)減區(qū)間為
(2).
解析試題分析:(1),為方程的兩根
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=x|x-2|.
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本題滿分14分)已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本題滿分12分)生物體死亡后,它機(jī)體內(nèi)原有的碳14會(huì)按確定的規(guī)律衰減,大約每經(jīng)過5730年衰減為原來的一半,這個(gè)時(shí)間稱為“半衰期”.
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分12分)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題共10分)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本題滿分10分)設(shè)函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分12分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
又
由及知:
當(dāng)和時(shí),,當(dāng)時(shí),
的單調(diào)增區(qū)間為和,的單調(diào)減區(qū)間為
(2)由得
令得
當(dāng)在上變化時(shí),的變化情況如下:-3 - 0 - 0 + + 0 - ↘ 極小值
↗
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)寫出f(x)的單調(diào)區(qū)間; (2)解不等式f(x)<3.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)如果當(dāng)且時(shí),恒成立,求實(shí)數(shù)的范圍.
(Ⅰ)設(shè)生物體死亡時(shí)體內(nèi)每克組織中的碳14的含量為1,根據(jù)上述規(guī)律,寫出生物體內(nèi)碳14的含量與死亡年數(shù)之間的函數(shù)關(guān)系式;
(Ⅱ)湖南長沙馬王堆漢墓女尸出土?xí)r碳14的殘余量約占原始含量的76.7℅,試推算馬王堆漢墓的年代.(精確到個(gè)位;輔助數(shù)據(jù):)
已知函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/99/1/1c9pj3.png" style="vertical-align:middle;" />的奇函數(shù),(1)求實(shí)數(shù)的值;(2)證明是上的單調(diào)函數(shù);(3)若對(duì)于任意的,不等式恒成立,求的取值范圍.
已知函數(shù)
(1)解關(guān)于的不等式;
(2)若函數(shù)的圖象恒在函數(shù)圖象的上方(沒有公共點(diǎn)),求的取值范圍。
(1)畫出函數(shù)y=f(x)的圖像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求實(shí)數(shù)x的范圍.
(1)畫出函數(shù)的圖象,寫出函數(shù)的單調(diào)區(qū)間;
(2)解關(guān)于的不等式.
設(shè)函數(shù),其中表示不超過的最大整數(shù),如.
(1)求的值;
(2)若在區(qū)間上存在x,使得成立,求實(shí)數(shù)k的取值范圍;
(3)求函數(shù)的值域.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)