【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線的交點(diǎn)為、,求的值.
【答案】(1);;(2)4
【解析】
(1)直接消去參數(shù),將直線的參數(shù)方程化為普通方程,利用互化公式將曲線的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(2)將直線的參數(shù)方程代入曲線的普通方程,得到,得出,,化簡,代入韋達(dá)定理,即可求出結(jié)果.
解:(1)的參數(shù)方程消去參數(shù),易得的普通方程為,
曲線:,
即,
∴,
所以曲線的直角坐標(biāo)方程為:.
(2)的參數(shù)方程(為參數(shù)),
設(shè)對應(yīng)參數(shù)為,對應(yīng)參數(shù)為,
將的參數(shù)方程與聯(lián)立得:,
得:,,
所以
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場種植小麥所獲得的收益.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,平面,底面為菱形,且有,,是線段上一點(diǎn),且與所成角的正弦值是.
(1)求的大小;
(2)若與平面所成的角的正弦值是,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是的一個(gè)極值點(diǎn),判斷的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A經(jīng)過定點(diǎn),且與定直線相切.
(1)求動(dòng)圓圓心的軌跡方程;
(2)已知點(diǎn),過點(diǎn)作直線與交于,兩點(diǎn),過點(diǎn)作軸的垂線分別與直線,交于點(diǎn),(為原點(diǎn)),求證:為線段中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為擔(dān)任班主任的教師辦理手機(jī)語音月卡套餐,為了解通話時(shí)長,采用隨機(jī)抽樣的方法,得到該校100位班主任每人的月平均通話時(shí)長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.
(1)求圖中的值;
(2)估計(jì)該校擔(dān)任班主任的教師月平均通話時(shí)長的中位數(shù);
(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的中心在原點(diǎn),其左焦點(diǎn)與拋物線的焦點(diǎn)重合,過的直線與橢圓交于、兩點(diǎn),與拋物線交于、兩點(diǎn).當(dāng)直線與軸垂直時(shí),.
(1)求橢圓的方程;
(2)求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在上至少存在兩個(gè)不同的,滿足,且在上具有單調(diào)性,點(diǎn)和直線分別為圖象的一個(gè)對稱中心和一條對稱軸,則下列命題中正確的是( )
A.的最小正周期為
B.
C.在上是減函數(shù)
D.將圖象上每一點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),得到的圖象,則
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com