(本小題滿分12分)已知函數(shù)
(Ⅰ)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(Ⅱ)若函數(shù)處取得極值,對恒成立,求實數(shù)的取值范圍.

(Ⅰ)當(dāng)上沒有極值點,當(dāng)時,上有一個極值點(Ⅱ)

解析試題分析:(Ⅰ)顯然函數(shù)的定義域為.
因為,所以,
當(dāng)時,上恒成立,函數(shù) 在單調(diào)遞減,
上沒有極值點;                                             ……3分
當(dāng) 時,由,由
上遞減,在上遞增,即處有極小值.
∴當(dāng)上沒有極值點,當(dāng)上有一個極值點.……6分
(Ⅱ)∵函數(shù)處取得極值,由(Ⅰ)結(jié)論知,
,                                     ……8分
,所以,
可得上遞減,令可得上遞增,  ……10分
,即.                                   ……12分
考點:本小題主要考查函數(shù)的求導(dǎo)、函數(shù)的單調(diào)性、函數(shù)的極值最值和恒成立問題,考查學(xué)生分析問題、解決問題的能力和分類討論思想的應(yīng)用以及運算求解能力.
點評:導(dǎo)數(shù)是研究函數(shù)問題的有力工具,常常用來解決函數(shù)的單調(diào)性、極值、最值等問題.對于題目條件較復(fù)雜,設(shè)問較多的題目審題時,應(yīng)該細(xì)致嚴(yán)謹(jǐn),將題目條件條目化,一一分析,細(xì)心推敲.對于設(shè)問較多的題目,一般前面的問題較簡單,問題難度階梯式上升,先由條件將前面的問題正確解答,然后將前面問題的結(jié)論作為后面問題解答的條件,注意問題之間的相互聯(lián)系,使問題化難為易,層層解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)已知函數(shù).(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常數(shù),=2.71828)使不等式成立,求實數(shù)的取值范圍;
(Ⅲ) 證明對一切都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,其中是自然常數(shù),
(Ⅰ)當(dāng)時, 研究的單調(diào)性與極值;
(Ⅱ)在(Ⅰ)的條件下,求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)求函數(shù)f(x)=- 2的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知,在時,都取得極值。
(Ⅰ)求的值;
(Ⅱ)若都有恒成立,求c的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)有極值,且曲線處的切線斜率為3.
(1)求函數(shù)的解析式;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的一個極值點.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)時,恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),且對于任意實數(shù),恒有
(1)求函數(shù)的解析式;
(2)函數(shù)有幾個零點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)
(1)若在的圖象上橫坐標(biāo)為的點處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內(nèi)有兩個不同的極值點,求a 取值范圍;
(3)在(1)的條件下,是否存在實數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個交點,若存在,試出實數(shù)m 的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案