已知?jiǎng)狱c(diǎn)P與雙曲線x2y2=1的兩個(gè)焦點(diǎn)F1F2的距離之和為定值,

(1)求動(dòng)點(diǎn)P的軌跡方程;

(2)設(shè)M(0,-1),若斜率為k(k≠0)的直線lP點(diǎn)的軌跡交于不同的兩點(diǎn)A、B,若要使|MA|=|MB|,試求k的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P的軌跡方程為:
x2
4
-
y2
5
=1(x>2),O是坐標(biāo)原點(diǎn).
①若直線x-my-3=0截動(dòng)點(diǎn)P的軌跡所得弦長(zhǎng)為5,求實(shí)數(shù)m的值;
②設(shè)過P的軌跡上的點(diǎn)P的直線與該雙曲線的兩漸近線分別交于點(diǎn)P1、P2,且點(diǎn)P分有向線段
P1P2
所成的比為λ(λ>0),當(dāng)λ∈[
3
4
3
2
]時(shí),求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A選修1-1) 2009-2010學(xué)年 第18期 總第174期 人教課標(biāo)版(A選修1-1) 題型:044

已知雙曲線C以y=0為漸近線,且過點(diǎn)A(3,2).

(1)求雙曲線C的標(biāo)準(zhǔn)方程;

(2)已知?jiǎng)狱c(diǎn)P與雙曲線C的兩個(gè)焦點(diǎn)所連線段長(zhǎng)的和為6,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)版高二(A選修2-1) 2009-2010學(xué)年 第18期 總第174期 人教課標(biāo)版(A選修2-1) 題型:044

已知雙曲線C以y=0為漸近線,且過點(diǎn)A(3,2).

(1)求雙曲線C的標(biāo)準(zhǔn)方程;

(2)已知?jiǎng)狱c(diǎn)P與雙曲線C的兩個(gè)焦點(diǎn)所連線段長(zhǎng)的和為6,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點(diǎn)的交點(diǎn)

⑴.已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo)。

⑵.已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上。

⑶.已知?jiǎng)狱c(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱的拋物線上,試問動(dòng)點(diǎn)P的軌跡落在哪種二次曲線上,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(上海卷理20)設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點(diǎn)的交點(diǎn)

⑴已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo).

⑵已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上.

⑶已知?jiǎng)狱c(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱的拋物線上,試問動(dòng)點(diǎn)P的軌跡落在哪種二次曲線上,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案