18.已知x>y>0,則(  )
A.$\frac{1}{x}-\frac{1}{y}>0$B.sinx-siny>0C.${({\frac{1}{2}})^x}-{({\frac{1}{2}})^y}<0$D.lnx+lny>0

分析 根據(jù)不等式的性質(zhì)可判斷A,根據(jù)正弦函數(shù)的性質(zhì)可判斷B,根據(jù)指數(shù)函數(shù)的性質(zhì)可判斷C,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)可判斷D

解答 解:由x>y>0,則$\frac{1}{x}$-$\frac{1}{y}$=$\frac{y-x}{xy}$<0,故A錯(cuò)誤,
根據(jù)正弦函數(shù)的圖象和性質(zhì),無法比較sinx與siny的大小,故B錯(cuò)誤,
根據(jù)指數(shù)函數(shù)的性質(zhì)可得$(\frac{1}{2})^{x}$-$(\frac{1}{2})^{y}$<0,故C正確,
根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),lnx+lny=lnxy,當(dāng)0<xy≤1時(shí),lnxy≤0,故D錯(cuò)誤,
故選:C.

點(diǎn)評(píng) 本題考查了基本函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)對(duì)任意的x∈R,都有f(-x)+f(x)=-6,且當(dāng)x≥0時(shí),f(x)=2x-4,則使得f(3x-x2)<0成立的x的取值范圍是( 。
A.(0,3)B.(-∞,0)∪(3,+∞)C.(1,2)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{1}{{{a_n}+1}}=\frac{3}{{{a_{n+1}}+1}},{a_2}=5$,則Sn=3n-n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知l、m表示直線,α、β、γ表示平面,下列條件中能推出結(jié)論正確的選項(xiàng)是( 。
條件:①l?α,α∥β;②α∥β,β∥γ;③l⊥α,α∥β;④l⊥m,l⊥α,m⊥β.
結(jié)論:a:l⊥β;b:α⊥β;c:l∥β;d:α∥γ.
A.①⇒c、②⇒d、③⇒a、④⇒bB.①⇒a、②⇒d、③⇒c、④⇒bC.①⇒b、②⇒d、③⇒a、④⇒cD.①⇒c、②⇒b、③⇒a、④⇒d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若等差數(shù)列{an}前9項(xiàng)的和為27,且a10=8,則d=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+1,}&{x<1}\\{{2}^{x}-2,}&{x≥1}\end{array}\right.$,g(x)=$\frac{1}{x}$,若對(duì)任意x∈[m,+∞)(m>0),總存在兩個(gè)x0∈[0,2],使得f(x0)=g(x),則實(shí)數(shù)m的取值范圍是( 。
A.[1,+∞)B.(0,1]C.[$\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}滿足${a_{n+1}}=\frac{1}{{1-{a_n}}}(n∈{N^*})$,a8=2,則a1=$\frac{1}{2}$;若數(shù)列{an}的前n項(xiàng)和是Sn,則S2017=$\frac{2017}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x-(x+1)ln(x+1),g(x)=x-a(x2+2x)(a∈R)
(Ⅰ)求f(x)的最大值;
(Ⅱ)若當(dāng)x≥0時(shí),不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓心為(3,4)的圓N被直線x=1截得的弦長為2$\sqrt{5}$.
(1)求圓N的方程;
(2)點(diǎn)B(3,-2)與點(diǎn)C關(guān)于直線x=-1對(duì)稱,求以C為圓心且與圓N外切的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案