已知函數(shù)
(1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若且關(guān)于x的方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(3)設(shè)各項(xiàng)為正的數(shù)列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*用數(shù)學(xué)歸納法證明:an≤2n-1
【答案】分析:(1)對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),令導(dǎo)數(shù)大于等于0在x>0上恒成立即可.
(2)將a的值代入整理成方程的形式,然后轉(zhuǎn)化為函數(shù)考慮其圖象與x軸的交點(diǎn)的問(wèn)題.
(3)設(shè)h(x)=lnx-x+1然后求導(dǎo),可判斷函數(shù)h(x)的單調(diào)性,再由數(shù)學(xué)歸納法得證.
解答:解:(I)f'(x)=-(x>0)
依題意f'(x)≥0在x>0時(shí)恒成立,即ax2+2x-1≤0在x>0恒成立.
則a≤=在x>0恒成立,
即a≤(x>0)
當(dāng)x=1時(shí),取最小值-1
∴a的取值范圍是(-∞,-1].

(II)a=-,f(x)=-x+b∴
設(shè)g(x)=則g'(x)=列表:

∴g(x)極小值=g(2)=ln2-b-2,g(x)極大值=g(1)=-b-,
又g(4)=2ln2-b-2
∵方程g(x)=0在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根.
,得ln2-2<b≤-

(III)設(shè)h(x)=lnx-x+1,x∈[1,+∞),則h'(x)=
∴h(x)在[1,+∞)為減函數(shù),且h(x)max=h(1)=0,故當(dāng)x≥1時(shí)有l(wèi)nx≤x-1.
∵a1=1
假設(shè)ak≥1(k∈N*),則ak+1=lnak+ak+2>1,故an≥1(n∈N*
從而an+1=lnan+an+2≤2an+1∴1+an+1≤2(1+an)≤…≤2n(1+a1
即1+an≤2n,∴an≤2n-1
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性與其導(dǎo)函數(shù)正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+(a+1)x+lg|a+2|,g(x)=(a+1)x,(a∈R,a≠-2).
(1)若函數(shù)f(x)和g(x)在區(qū)間[lg|a+2|,(a+1)2]上都是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)在(1)的條件下,比較f(1)與
16
的大小,寫出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3(ax+b)圖象過(guò)點(diǎn)A(2,1)和B(5,2),設(shè)an=3f(n),n∈N*
(Ⅰ)求函數(shù)f(x)的解析式及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
對(duì)一切n∈N*均成立的最大實(shí)數(shù)a;
(Ⅲ)對(duì)每一個(gè)k∈N*,在ak與ak+1之間插入2k-1個(gè)2,得到新數(shù)列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,記為{bn},設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,試問(wèn)是否存在正整數(shù)m,使Tm=2008?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數(shù)”,如果是,請(qǐng)求對(duì)應(yīng)的k的值;如果不是,請(qǐng)說(shuō)明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果是函數(shù)的一個(gè)極值,稱點(diǎn)是函數(shù)的一個(gè)極值點(diǎn).已知函數(shù)

(1)若函數(shù)總存在有兩個(gè)極值點(diǎn),求所滿足的關(guān)系;

(2)若函數(shù)有兩個(gè)極值點(diǎn),且存在,求在不等式表示的區(qū)域內(nèi)時(shí)實(shí)數(shù)的范圍.

(3)若函數(shù)恰有一個(gè)極值點(diǎn),且存在,使在不等式表示的區(qū)域內(nèi),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三12月月考數(shù)學(xué)理卷 題型:解答題

(本小題滿分14分)已知函數(shù) 

(1)若函數(shù)在區(qū)間其中a >0,上存在極值,求實(shí)數(shù)a的取值范圍;

(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍;

(3)求證.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案