分析 根據(jù)方程求解出圓心,半徑,判斷兩個圓的位置關(guān)系,求出區(qū)間的長度,即可得出結(jié)論.
解答 解:由“圓(x-2)2+(y+1)2=4與圓(x+1)2+(y-3)2=r2僅有兩條公切線“可得圓心分別為(2,-1),(-1,3),半徑為2和r,
根據(jù)兩個圓的位置關(guān)系可得|r-2|<$\sqrt{(2+1)^{2}+(-1-3)^{2}}$<r+2,
∴3<r<7,區(qū)間長度為4,
∴所求概率為$\frac{4}{5}$,
故答案為$\frac{4}{5}$.
點(diǎn)評 本題考查了圓與圓的位置關(guān)系,考查概率的計(jì)算,屬于容易題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4) | B. | (0,4] | C. | [0,4) | D. | [0,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{8}$ | B. | $\frac{{\sqrt{3}}}{16}$ | C. | $\frac{{\sqrt{3}}}{24}$ | D. | $\frac{{\sqrt{3}}}{48}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-3] | B. | [-3,1] | C. | [1,+∞)∪(-∞,-3] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3x}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com