(本小題滿分12分)
在△中,點(diǎn),,,為的中點(diǎn),.
(Ⅰ)求邊上的高所在直線的方程;
(Ⅱ)求所在直線的方程.
(1) (2)
解析試題分析:解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9d/1/3dikt.png" style="vertical-align:middle;" />(1,1) ,(0,-2),(4,2),
所以所在直線的斜率為1, ………………………2分
所以邊高所在直線的斜率為-1, …………………4分
所以邊高所在直線的方程為,
即. ………………………6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/23/a/53pwp.png" style="vertical-align:middle;" />為的中點(diǎn),所以, ………………………8分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7b/7/uto3g4.png" style="vertical-align:middle;" />//,
所以所在直線的方程為,
即. ………………………12分
考點(diǎn):本試題考查了直線方程。
點(diǎn)評(píng):解決直線方程的一般就是求解一個(gè)點(diǎn)和一個(gè)斜率,或者是斜率和截距來(lái)得到直線的方程。同時(shí)要結(jié)合平行系或者垂直直線系的直線方程來(lái)求解。屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(理)已知⊙:和定點(diǎn),由⊙外一點(diǎn)向⊙引切線,切點(diǎn)為,且滿足.
(1)求實(shí)數(shù)間滿足的等量關(guān)系;
(2)求線段長(zhǎng)的最小值;
(3)若以為圓心所作的⊙與⊙有公共點(diǎn),試求半徑取最小值時(shí)的⊙方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線l經(jīng)過A,B兩點(diǎn),且A(2,1), =(4,2).
(1)求直線l的方程;
(2)圓C的圓心在直線l上,并且與x軸相切于(2,0)點(diǎn),求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分8分)已知直線:和點(diǎn)(1,2),設(shè)過點(diǎn)與垂直的直線為.
(1)求直線的方程;
(2)求直線與兩坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)已知直線:和:。
(1)當(dāng)∥時(shí),求a的值(2)當(dāng)⊥時(shí)求a的值及垂足的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線經(jīng)過直線與直線的交點(diǎn),且垂直于直線.
(1)求直線的方程;
(2)求直線與兩坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題10分)求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點(diǎn)M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com