設(shè)數(shù)列{an}是一個(gè)公差為的等差數(shù)列,已知它的前10項(xiàng)和為,且a1,a2,a4 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和Tn .
(1)(2)Tn
解析試題分析:(1)由等差數(shù)列的求和公式代入已知條件可得d的值,進(jìn)而可得a1的值,可得通項(xiàng)公式;(2)可得,裂項(xiàng)相消法可得其和.
試題解析:(1)設(shè)數(shù)列{an}的前項(xiàng)和為,
∵S10 = 110,∴.
則.①
∵a1,a2,a4 成等比數(shù)列,
∴,即.∴.
∵d ¹ 0,∴a1 = d.②
由①,②解得,∴.
(2)∵=,
∴.
∴ .
考點(diǎn):等差數(shù)列的通項(xiàng)公式和求和公式,裂項(xiàng)相消法求數(shù)列的和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等比數(shù)列的前項(xiàng)和為,公比,已知.
(1)求數(shù)列的通項(xiàng)公式;
(2)若分別為等差數(shù)列的第4項(xiàng)和第16項(xiàng),試求數(shù)列的通項(xiàng)公式及前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知公差不為0的等差數(shù)列滿(mǎn)足,,,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和;(Ⅲ)設(shè),若數(shù)列是單調(diào)遞減數(shù)列,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等差數(shù)列中,,.
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為,且,令.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)若,用數(shù)學(xué)歸納法證明是18的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列的公差為,點(diǎn)在函數(shù)的圖象上().
(1)若,點(diǎn)在函數(shù)的圖象上,求數(shù)列的前項(xiàng)和;
(2)若,學(xué)科網(wǎng)函數(shù)的圖象在點(diǎn)處的切線(xiàn)在軸上的截距為,求數(shù)列的前 項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列滿(mǎn)足:,(≥3),記
(≥3).
(1)求證數(shù)列為等差數(shù)列,并求通項(xiàng)公式;
(2)設(shè),數(shù)列{}的前n項(xiàng)和為,求證:<<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列{an}中,an+1+an=2n-44(n∈N*),a1=-23.
(1)求an;
(2)設(shè)Sn為{an}的前n項(xiàng)和,求Sn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2012•廣東)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足,且a1,a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com