【題目】雙曲線的一條漸近線方程是,坐標(biāo)原點到直線AB的距離為,其中,.

1)求雙曲線的方程;

2)若是雙曲線虛軸在y軸正半軸上的端點,過點B作直線交雙曲線于點MN,求時,直線MN的方程.

【答案】(1) (2)

【解析】

1)根據(jù)雙曲線的漸近線方程求得;求得直線的方程,利用原點到直線的距離列方程,由此求得的值,進(jìn)而求得雙曲線方程.

2)設(shè)出直線的方程,聯(lián)立直線的方程和雙曲線方程,寫出韋達(dá)定理,根據(jù)得到,利用平面向量數(shù)量積的坐標(biāo)運算化簡,由此求得直線的斜率,進(jìn)而求得直線的方程.

1)設(shè)直線,由題意,

,∴,∴雙曲線方程為.

2)由(1)得,,設(shè),設(shè)直線,

,整理得①,

,

,.

,,

,即,

解得,∴代入①有解,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足: , .若方程有5個實根,則正數(shù)a的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知pr的充分條件而不是必要條件,qr的充分條件,sr的必要條件,qs的必要條件,F(xiàn)有下列命題:①sq的充要條件;②pq的充分條件而不是必要條件;③rq的必要條件而不是充分條件;④的必要條件而不是充分條件;⑤rs的充分條件而不是必要條件.則正確命題序號是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,分別為的中點.

(1)證明:平面;

(2)若平面,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為分別為其左、右焦點,為橢圓上一點,且的周長為.

(1)求橢圓的方程;

(2)過點作關(guān)于軸對稱的兩條不同的直線,若直線交橢圓于一點,直線交橢圓于一點,證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝時期的數(shù)學(xué)家祖暅提出了計算體積的祖暅原理:“冪勢既同,則積不容異!币馑际牵簝蓚等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等.已知曲線,直線為曲線在點處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個幾何體:

圖①是底面直徑和高均為的圓錐;

圖②是將底面直徑和高均為的圓柱挖掉一個與圓柱同底等高的倒置圓錐得到的幾何體;

圖③是底面邊長和高均為的正四棱錐;

圖④是將上底面直徑為,下底面直徑為,高為的圓臺挖掉一個底面直徑為,高為的倒置圓錐得到的幾何體.

根據(jù)祖暅原理,以上四個幾何體中與的體積相等的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求不等式的解集;

(2)若不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題,大概意思如下:在下雨時,用一個圓臺形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )

A. 3寸B. 4寸C. 5寸D. 6寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無價之寶.改革開放以來,有的地方領(lǐng)導(dǎo)片面追求政績,對森林資源野蠻開發(fā)受到嚴(yán)肅查處事件時有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進(jìn)甲、乙兩種樹苗,并對甲、乙兩種樹苗各抽測了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:

(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;

(2)據(jù)莖葉圖,運用統(tǒng)計學(xué)知識分析比較甲、乙兩種樹苗高度整齊情況.

查看答案和解析>>

同步練習(xí)冊答案