精英家教網 > 高中數學 > 題目詳情
13、設α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若α⊥γ,β⊥γ,則α∥β;
②若α∥β,l?α,則l∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中命題正確的是
②④
(填序號)
分析:①若α⊥γ,β⊥γ,則α∥β,可用面面平行的條件進行判斷;
②若α∥β,l?α,則l∥β,可用線面平行的條件進行判斷;
③若m?α,n?α,m∥β,n∥β,則α∥β,可用面面平行的條件進行判斷;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n,可用線線平行的條件進行判斷;
解答:解:①若α⊥γ,β⊥γ,則α∥β,因為垂直于同一平面的兩個平面可能相交,故此命題不正確;
②若α∥β,l?α,則l∥β,因為兩個平面平行一個平面中的線一定與另一個平面沒有公共點,由線面平行的定義知命題正確;
③若m?α,n?α,m∥β,n∥β,則α∥β,由面面平行的判定定理知,此命題缺少一個條件,兩線交于一點的條件,故不能判斷出面面平行,由此,命題不正確;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n,,由線面平行的判定定理與性質定理可以判斷出,此命題正確.
故答案為②④
點評:本題考查空間中直線與平面之間的位置關系,求解的關鍵是有較強的空間想像能力以及對相關的定理與性質掌握得比較熟練.本題易因為定義及定理理解得不準確而出錯,要加強對于基礎知識的記憶.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

8、設α、β、γ為兩兩不重合的平面,l、m、n為兩兩不重合的直線,給出下列四個命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若m?α,n?α,m∥β,n∥β,則α∥β;
②若α∥β,l?α,則l∥β;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥m,則 m∥n;
④若α⊥γ,β⊥γ,則α∥β;
則其中所有正確命題的序號是
②③
②③

查看答案和解析>>

科目:高中數學 來源: 題型:

設α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中正確命題是
③④
③④
 (填寫序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知a,b,c為兩兩不相等的實數,求證:a2+b2+c2>ab+bc+ca;
(2)設a,b,c∈(0,+∞),且a+b+c=1,求證(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

同步練習冊答案