精英家教網 > 高中數學 > 題目詳情
用總長為14.8m的鋼條制作一個長方體容器的框架,如果所制作容器的底面的一邊比另一邊長0.5m,那么高為多少時容器的容積最大?并求出它的最大容積.
當高為時,容器的容積最大,最大容積為

試題分析:先設容器底面短邊長為,利用長方體的體積公式求得其容積表達式,再利用導數研究它的單調性,進而得出此函數的最大值即可.
試題解析:設容器底面短邊的邊長為,容積為,則底面另一邊長為,高為:
由題意知:,,

,解之得:(舍去).
又當時,為增函數;當時,為減函數.
所以時取得極大值,這個極大值就是時的最大值,即,此時容器的高為1.2.
所以當高為時,容器的容積最大,最大值為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某市環(huán)保部門對市中心每天環(huán)境污染情況進行調查研究,發(fā)現一天中環(huán)境污染指數與時刻(時)的關系為,,其中是與氣象有關的參數,且,用每天的最大值作為當天的污染指數,記作.
(1)令,,求的取值范圍;
(2)按規(guī)定,每天的污染指數不得超過2,問目前市中心的污染指數是否超標?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

用水清洗一堆蔬菜上殘留的農藥,對用一定量的水清洗一次的效果作如下假定:用一個單位的水可洗掉蔬菜上殘留農藥的,用水越多洗掉的農藥量也越多,但總還有農藥殘留在蔬菜上.設用單位量的水清洗一次以后,蔬菜上殘留的農藥量與本次清洗前殘留的農藥量之比為函數
⑴試規(guī)定的值,并解釋其實際意義;
⑵試根據假定寫出函數應滿足的條件和具有的性質;
⑶設,現有單位量的水,可以清洗一次,也可以把水平均分成兩份后清洗兩次.試問用那種方案清洗后蔬菜上殘留的農藥量比較少?說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如果n件產品中任取一件樣品是次品的概率為,則認為這批產品中有件次品。某企業(yè)的統計資料顯示,產品中發(fā)生次品的概率p與日產量n滿足,有已知每生產一件正品可贏利a元,如果生產一件次品,非但不能贏利,還將損失元().
(1)求該企業(yè)日贏利額的最大值;
(2)為保證每天的贏利額不少于日贏利額最大值的50%,試求該企業(yè)日產量的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知命題p:任意x∈R,x2+x-6<0,則?p是( 。
A.任意x∈R,x2+x-6≥0B.存在x∈R,x2+x-6≥0
C.任意x∈R,x2+x-6>0D.存在x∈R,x2+x-6<0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數滿足2+,對x≠0恒成立,在數列{an}、{bn}中,a1=1,b1=1,對任意x∈N+,。
(1)求函數解析式;
(2)求數列{an}、{bn}的通項公式;
(3)若對任意實數,總存在自然數k,當n≥k時,恒成立,求k的最小值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知,則=___________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

,若,則       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知,且,則等于         .

查看答案和解析>>

同步練習冊答案