【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,已知曲線的參數(shù)方程為,(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(2)已知曲線交于兩點(diǎn),點(diǎn)且垂直于的直線與曲線交于兩點(diǎn),的值.

【答案】(1). . (2).

【解析】試題分析:(I)曲線C1的參數(shù)方程為(φ為參數(shù)),利用平方關(guān)系可得普通方程.利用互化公式可得:曲線C1的極坐標(biāo)方程.曲線C2的極坐標(biāo)方程為ρ=sinθ,可得:ρ2=ρsinθ,利用互化公式可得:曲線C2的直角坐標(biāo)方程.

(II)聯(lián)立,可得tanθ=2,設(shè)點(diǎn)A的極角為θ,則tanθ=2,可得sinθ=,cosθ=,則M,代入ρ=2cosθ,可得:ρ1.N,代入ρ=sinθ,可得:ρ2.可得:|MN|1+ρ2

試題解析:

(1)曲線的參數(shù)方程為為參數(shù)),

利用平方關(guān)系可得:,化為直角坐標(biāo)方程.

利用互化公式可得:曲線的極坐標(biāo)方程為,即.

曲線的極坐標(biāo)方程為,可得:,可得:曲線的直角坐標(biāo)方程為.

(2)聯(lián)立,可得,設(shè)點(diǎn)的極角為,則,可得,,

,代入,可得:.

,代入,可得:.

可得:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中, , .將沿折起至,使得平面平面(如圖2), 為線段上一點(diǎn).

圖1 圖2

(Ⅰ)求證: ;

(Ⅱ)若為線段中點(diǎn),求多面體與多面體的體積之比;

(Ⅲ)是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng).若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.

1)求的表達(dá)式,并求函數(shù)的值域

2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)不等實(shí)根,求常數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C 的離心率與雙曲線的離心率互為倒數(shù),且過點(diǎn)

1)求橢圓C的方程;

2)過作兩條直線與圓相切且分別交橢圓于MN兩點(diǎn).

求證:直線MN的斜率為定值;

MON面積的最大值(其中O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)的10000件產(chǎn)品的質(zhì)量評(píng)分服從正態(tài)分布. 現(xiàn)從中隨機(jī)抽取了50件產(chǎn)品的評(píng)分情況,結(jié)果這50件產(chǎn)品的評(píng)分全部介于80分到140分之間.現(xiàn)將結(jié)果按如下方式分為6組,第一組,第二組, ,第六組得到如下圖所示的頻率分布直方圖.

1)試用樣本估計(jì)該工廠產(chǎn)品評(píng)分的平均分(同一組中的數(shù)據(jù)用該區(qū)間的中間值作代表);

2)這50件產(chǎn)品中評(píng)分在120分(含120分)以上的產(chǎn)品中任意抽取3件,該3件在全部產(chǎn)品中評(píng)分為前13名的件數(shù)記為,的分布列.

,, , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某輪船公司的一艘輪船每小時(shí)花費(fèi)的燃料費(fèi)與輪船航行速度的平方成正比,比例系數(shù)為輪船的最大速度為15海里小時(shí)當(dāng)船速為10海里小時(shí),它的燃料費(fèi)是每小時(shí)96元,其余航行運(yùn)作費(fèi)用(不論速度如何)總計(jì)是每小時(shí)150元假定運(yùn)行過程中輪船以速度v勻速航行.

k的值;

求該輪船航行100海里的總費(fèi)用燃料費(fèi)航行運(yùn)作費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直線2xyλ=0沿x軸向左平移1個(gè)單位,所得直線與圓x2y2+2x-4y=0相切,則實(shí)數(shù)λ的值為(  )

A.-3或7B.-2或8

C.0或10D.1或11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列的前項(xiàng)和為,且是常數(shù),),.

(1)求的值及數(shù)列的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩支球隊(duì)進(jìn)行總決賽,比賽采用七場(chǎng)四勝制,即若有一隊(duì)先勝四場(chǎng),則此隊(duì)為總冠軍,比賽就此結(jié)束.因兩隊(duì)實(shí)力相當(dāng),每場(chǎng)比賽兩隊(duì)獲勝的可能性均為.據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽可獲得門票收入40萬(wàn)元,以后每場(chǎng)比賽門票收入比上一場(chǎng)增加10萬(wàn)元.

(I)求總決賽中獲得門票總收入恰好為300萬(wàn)元的概率;

(II)設(shè)總決賽中獲得門票總收入為X,求X的均值E(X).

查看答案和解析>>

同步練習(xí)冊(cè)答案