【題目】設(shè)x,y滿足約束條件 ,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值M,若M的取值范圍是[1,2],則點(diǎn)M(a,b)所經(jīng)過的區(qū)域面積= .
【答案】
【解析】解:作出約束條件 所對應(yīng)的可行域(如圖△OAB及內(nèi)部),
變形目標(biāo)函數(shù)z=ax+by可得y=﹣ x+ z,
當(dāng)﹣ ≤﹣2時(shí),直線經(jīng)過點(diǎn)A(1,0)時(shí),z取最大值a∈[1,2],
由 得點(diǎn)M(a,b)所經(jīng)過的區(qū)域如下圖所示:
故點(diǎn)M(a,b)所經(jīng)過的區(qū)域面積S= ,
當(dāng)﹣ >﹣2時(shí),直線經(jīng)過點(diǎn)B(0,2)時(shí),z取最大值2b∈[1,2],
由 得點(diǎn)M(a,b)所經(jīng)過的區(qū)域如下圖所示:
故點(diǎn)M(a,b)所經(jīng)過的區(qū)域面積S= ,
綜上可得:點(diǎn)M(a,b)所經(jīng)過的區(qū)域面積面積S= ,
所以答案是: .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求M的軌跡方程;
(2)當(dāng)|OP|=|OM|時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( )
A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD= .
(1)求證:CD⊥平面ADS;
(2)求AD與SB所成角的余弦值;
(3)求二面角A﹣SB﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l極坐標(biāo)方程ρcosθ﹣ρsinθ+3=0,圓M的極坐標(biāo)方程為ρ=4sinθ.以極點(diǎn)為原點(diǎn),極軸為x軸建立直角坐標(biāo)系(1)寫出直線l與圓M的直角標(biāo)方程;
(2)設(shè)直線l與圓M交于A、B兩點(diǎn),求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出的命題中:
(1)“雙曲線的方程為”是“雙曲線的漸近線為”的充分不必要條件;
(2)“”是“直線與直線互相垂直”的必要不充分條件;
(3)已知隨機(jī)變量服從正態(tài)分布,且,則;
(4)已知圓,圓,則這兩個(gè)圓有3條公切線.
其中真命題的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將7名應(yīng)屆師范大學(xué)畢業(yè)生分配到3所中學(xué)任教.
(1)4個(gè)人分到甲學(xué)校,2個(gè)人分到乙學(xué)校,1個(gè)人分到丙學(xué)校,有多少種不同的分配方案?
(2)一所學(xué)校去4個(gè)人,另一所學(xué)校去2個(gè)人,剩下的一個(gè)學(xué)校去1個(gè)人,有多少種不同的分配方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓上動點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為4,且到右焦點(diǎn)距離的最大值為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)為橢圓的上頂點(diǎn),若直線與橢圓交于兩點(diǎn)(不是上下頂點(diǎn)).試問:直線是否經(jīng)過某一定點(diǎn),若是,求出該定點(diǎn)的坐標(biāo);若不是,請說明理由;
(3)在(2)的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,分別為,的中點(diǎn),平面平面,且.
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com