已知
m
=(asinx,cosx),
n
=(sinx,bsinx)
,其中a,b,x∈R.若f(x)=
m
n
滿足f(
π
6
)=2,且f(x)的圖象關于直線x=
π
3
對稱.
(Ⅰ)求a,b的值;
(Ⅱ)若關于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]上總有實數(shù)解,求實數(shù)k的取值范圍.
(Ⅰ)f(x)=
m
n
=asin2x+bsinxcosx
=
a
2
(1-cos2x)+
b
2
sin2x

f(
π
6
)=2
得,a+
3
b=8

∵f(x)的圖象關于x=
π
3
對稱,∴f(0)=f(
2
3
π)
b=
3
a

由①、②得,a=2,b=2
3

(Ⅱ)由(Ⅰ)得f(x)=1-cos2x+
3
sin2x
=2sin(2x-
π
6
)+1

x∈[0,
π
2
]
,-
π
6
≤2x-
π
6
6

-1≤2sin(2x-
π
6
)≤2
,f(x)∈[0,3].
又∵f(x)+log2k=0有解,即f(x)=-log2k有解,
∴-3≤log2k≤0,解得
1
8
≤k≤1
,即k∈[
1
8
,1]
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
m
=(asinx,cosx),
n
=(sinx,bsinx)
,其中a,b,x∈R.若f(x)=
m
n
滿足f(
π
6
)=2
,且f(x)的導函數(shù)f'(x)的圖象關于直線x=
π
12
對稱.
(Ⅰ)求a,b的值;
(Ⅱ)若關于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]
上總有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
m
=(asinx,cosx),
n
=(sinx,bsinx)
,其中a,b,x∈R.若f(x)=
m
n
滿足f(
π
6
)=2,且f(x)的圖象關于直線x=
π
3
對稱.
(Ⅰ)求a,b的值;
(Ⅱ)若關于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]上總有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上海)定義向量
OM
=(a,b)的“相伴函數(shù)”為f(x)=asinx+bcosx,函數(shù)f(x)=asinx+bcosx的“相伴向量”為
OM
=(a,b)(其中O為坐標原點).記平面內所有向量的“相伴函數(shù)”構成的集合為S.
(1)設g(x)=3sin(x+
π
2
)+4sinx,求證:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)為圓C:(x-2)2+y2=1上一點,向量
OM
的“相伴函數(shù)”f(x)在x=x0處取得最大值.當點M在圓C上運動時,求tan2x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
m
=(asinx,cosx),
n
=(sinx,bsinx)
,其中a,b,x∈R.若f(x)=
m
n
滿足f(
π
6
)=2
,且f(x)的導函數(shù)f'(x)的圖象關于直線x=
π
12
對稱.
(Ⅰ)求a,b的值;
(Ⅱ)若關于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]
上總有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案