【題目】如圖,已知在算法中分別表示取商和取余數(shù).為了驗(yàn)證三位數(shù)卡普雷卡爾數(shù)字黑洞(即輸入一個(gè)無(wú)重復(fù)數(shù)字的三位數(shù),經(jīng)過(guò)如圖的有限次的重排求差計(jì)算,結(jié)果都為495.小明輸入,則輸出的

A.3B.4C.5D.6

【答案】B

【解析】

首先讀懂程序,輸入任意一個(gè)無(wú)重復(fù)數(shù)字的三位數(shù),將其個(gè)位,十位,百位重新排列,組成一個(gè)最大數(shù)和一個(gè)最小數(shù),寫出每次循環(huán)的結(jié)果,使差是495結(jié)束循環(huán),即可得出答案.

先讀懂程序:輸入任意一個(gè)無(wú)重復(fù)數(shù)字的三位數(shù),

將其個(gè)位,十位,百位重新排列,組成一個(gè)最大數(shù)和一個(gè)最小數(shù),

然后作差,若差不為495,則繼續(xù)此過(guò)程,經(jīng)過(guò)有限次步驟之后,最后結(jié)果一定是495.

對(duì)于輸入的325,第一次循環(huán):

重新排列后,最大數(shù)為532,最小數(shù)為235,相減得297,然后;

第二次循環(huán):重新排列后,最大數(shù)為972,最小數(shù)為279,相減得693,然后;

第三次循環(huán):重新排列后,最大數(shù)為963,最小數(shù)為369,相減得594,然后

第四次循環(huán):重新排列后,最大數(shù)為954,最小數(shù)為459,相減得495,然后

結(jié)束循環(huán),

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有編號(hào)分別為1,2,3,4,5,6,7,8的八個(gè)小球和編號(hào)為1,23,4,5,6,7,8的八個(gè)盒子.現(xiàn)將這八個(gè)小球隨機(jī)放入八個(gè)盒子內(nèi),要求每個(gè)盒子內(nèi)放一個(gè)球,要求編號(hào)為偶數(shù)的小球在編號(hào)為偶數(shù)的盒子內(nèi),且至少有四個(gè)小球在相同編號(hào)的盒子內(nèi),則一共有______種投放方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心為,左、右焦點(diǎn)分別為,上頂點(diǎn)為,右頂點(diǎn)為,且、、成等比數(shù)列.

1)求橢圓的離心率;

2)判斷的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,設(shè)成立; 成立. 如果“”為真,“”為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在算法中分別表示取商和取余數(shù).為了驗(yàn)證三位數(shù)卡普雷卡爾數(shù)字黑洞(即輸入一個(gè)無(wú)重復(fù)數(shù)字的三位數(shù),經(jīng)過(guò)如圖的有限次的重排求差計(jì)算,結(jié)果都為495.小明輸入,則輸出的

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,在中,的中點(diǎn),四邊形是等腰梯形,,

(Ⅰ)求異面直線所成角的正弦值;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為,且過(guò)點(diǎn)

1)求C的方程;

2)若直線lC有且只有一個(gè)公共點(diǎn),l與圓x2+y26交于A,B兩點(diǎn),直線OAOB的斜率分別記為k1,k2.試判斷k1k2是否為定值,若是,求出該定值;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADBCABACAD3,PABC4.

1)求異面直線PBCD所成角的余弦值;

2)求平面PAD與平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn), , 分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且

(1)求橢圓的方程;

(2)已知直線 被圓 所截得的弦長(zhǎng)為,若直線與橢圓交于, 兩點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案