【題目】函數(shù)的定義域為,且對任意,有,且當(dāng)時,,
(Ⅰ)證明是奇函數(shù);
(Ⅱ)證明在上是減函數(shù);
(III)若,,求的取值范圍.
【答案】(Ⅰ)見解析(Ⅱ)見解析(III)
【解析】
(Ⅰ)令y=-x,代入已知等式通過f(0)=0可判斷奇偶性;(Ⅱ)利用函數(shù)的單調(diào)性定義作差即可得到證明;(III)利用函數(shù)的單調(diào)性列不等式求解即可.
(Ⅰ)證明:由,
令y=-x,得f[x+(x)]=f(x)+f(x),
∴f(x)+f(x)=f(0).
又f(0+0)=f(0)+f(0),∴f(0)=0.
從而有f(x)+f(x)=0.∴f(x)=f(x).
∴f(x)是奇函數(shù).
(Ⅱ)任取,且,
則
由,∴∴<0.
∴>0,即,
從而f(x)在R上是減函數(shù).
(III)若,函數(shù)為奇函數(shù)得f(-3)=1,
又5=5f(-3)=f(-15),
所以=f(-15),
由得f(4x-13)<f(-15),
由函數(shù)單調(diào)遞減得4x-13>-15,解得x>-,
故的取值范圍為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是橢圓的左、右焦點.
(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標(biāo);
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個內(nèi)角,則( )
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{bn}的前n項和 .
(1)求數(shù)列{bn}的通項公式;
(2)設(shè)數(shù)列{an}的通項 ,求數(shù)列{an}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時)
(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計該校學(xué)生每周平均體育運動時間超過4個小時的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)與函數(shù),為“同族函數(shù)”.下面函數(shù)解析式中能夠被用來構(gòu)造“同族函數(shù)”的是( )
A.B.C.
D.E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象,如圖所示.
(1)求函數(shù)的解析式;
(2)若方程在上有兩個不同的實根,試求的取值范圍;
(3)若,求出函數(shù)在上的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)的表達式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對稱中心為(﹣ , ),現(xiàn)已知函數(shù)f(x)= ,數(shù)列{an}的通項公式為an=f( )(n∈N),則此數(shù)列前2017項的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù),且.
(1)求a的值;
(2)求證:在定義域上是減函數(shù).
(3)解關(guān)于實數(shù)的不等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com