【題目】某高校在2017年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表:

組號

分組

頻率

1

2

3

4

5

求出頻率分布表中處應(yīng)填寫的數(shù)據(jù),并完成如圖所示的頻率分布直方圖;

根據(jù)直方圖估計這次自主招生考試筆試成績的平均數(shù)和中位數(shù)結(jié)果都保留兩位小數(shù)

【答案】(1), 頻率分布直方圖見解析,(2) 平均數(shù)為172.25,中位數(shù)為170.10

【解析】

1)由表中所有頻率和為1可求得處頻率,由頻率分布圖的作法作出頻率分布直方圖;

(2)由頻率分布直方圖,取各小矩形中點處值作為此組的估計值進(jìn)行計算可得平均值,中位數(shù)是把所有小矩形面積等分的那點的值.

1)由頻率分布表的性質(zhì)得:處應(yīng)填寫的數(shù)據(jù)為:

完成頻率分布直方圖如下:

2)平均數(shù)為:

,解得,

中位數(shù)為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求橢圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(2)若點的極坐標(biāo)為,直線與橢圓相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于,兩個相異點,證明:面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為中心,以坐標(biāo)軸為對稱軸的幫圓C經(jīng)過點M(2,1),N.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)經(jīng)過點M作傾斜角互補的兩條直線,分別與橢圓C相交于異于M點的A,B兩點,當(dāng)△AMB面積取得最大值時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,兩點分別在上,且使,. 現(xiàn)將沿折起,使平面平面,得到四棱錐 (如圖2

1)證明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的左焦點為,左準(zhǔn)線為為橢圓上任意一點,直線,垂足為,直線交于點

(1)若,且,直線的方程為.①求橢圓的方程;②是否存在點,使得?若存在,求出點的坐標(biāo);若不存在,說明理由.

(2)設(shè)直線與圓交于兩點,求證:直線均與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱,側(cè)面底面ABC, ,,OAC中點.


(1)求直線與平面所成角的正弦值;
(2)上是否存在一點E,使得平面,若不存在,說明理由;若存在,確定點E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)有居民人,為了迎接第十一個“全民健身日”的到來,居委會從中隨機抽取了名居民,統(tǒng)計了他們本月參加戶外運動時間(單位:小時)的數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,分為組:,,,,得到如圖所示的頻率分布直方圖.

(Ⅰ)試估計該社區(qū)所有居民中,本月戶外運動時間不小于小時的人數(shù);

(Ⅱ)已知這名居民中恰有名女性的戶外運動時間在,現(xiàn)從戶外運動時間在的樣本對應(yīng)的居民中隨機抽取人,求至少抽到名女性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在拋物線上.

1)求的方程;

2)過上的任一點的頂點不重合)作軸于,試求線段中點的軌跡方程;

3)在上任取不同于點的點,直線與直線交于點,過點軸的垂線交拋物線于點,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案