如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)  

(Ⅰ)試判斷函數(shù)f(x)=x3+在(0,+∞)上是否有下界?并說(shuō)明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說(shuō)明理由;
(Ⅲ)若函數(shù)f(x)在D上既有上界又有下界,則稱函數(shù)f(x)在D上有界,函數(shù)f(x)叫做有界函數(shù).試探究函數(shù)f(x)=ax3+(a>0,b>0a,b是常數(shù))是否是[m,n](m>0,n>0,m、n是常數(shù))上的有界函數(shù)?
【答案】分析:(I)函數(shù)f(x)=x3+在(0,+∞)上有下界32.利用導(dǎo)數(shù)或基本不等式求極小值能夠進(jìn)行判斷.
(Ⅱ)類比函數(shù)有下界的定義,函數(shù)有上界可以這樣定義:定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)B,都有f(x)≤B成立,則稱函數(shù)f(x)在D上有上界,其中B稱為函數(shù)的上界.利用函數(shù)在(-∞,0)上有下界及其奇偶性即可得出結(jié)論;
(Ⅲ)求導(dǎo),利用導(dǎo)數(shù)研究其單調(diào)性,再對(duì)字母m的值進(jìn)行分類討論,即可得到函數(shù)是[m,n]上的有界函數(shù).
解答:解:(Ⅰ)
解法1:∵,由f'(x)=0得,x4=16,∵x∈(0,+∞),
∴x=2,-----------------------------(2分)
∵當(dāng)0<x<2時(shí),f'(x)<0,∴函數(shù)f(x)在(0,2)上是減函數(shù);
當(dāng)x>2時(shí),f'(x)>0,∴函數(shù)f(x)在(2,+∞)上是增函數(shù);
∴x=2是函數(shù)的在區(qū)間(0,+∞)上的最小值點(diǎn),
∴對(duì)?x∈(0,+∞),都有f(x)≥32,------------------------------------(4分)
即在區(qū)間(0,+∞)上存在常數(shù)A=32,使得對(duì)?x∈(0,+∞)都有f(x)≥A成立,
∴函數(shù)在(0,+∞)上有下界.-----------------------------(5分)
[解法2:∵x>0∴
當(dāng)且僅當(dāng)即x=2時(shí)“=”成立
∴對(duì)?x∈(0,+∞),都有f(x)≥32,
即在區(qū)間(0,+∞)上存在常數(shù)A=32,使得對(duì)?x∈(0,+∞)都有f(x)≥A成立,
∴函數(shù)在(0,+∞)上有下界.]
(Ⅱ)類比函數(shù)有下界的定義,函數(shù)有上界可以這樣定義:
定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)B,都有f(x)≤B成立,則稱函數(shù)f(x)在D上有上界,其中B稱為函數(shù)的上界.------------------------------(7分)
設(shè)x<0,則-x>0,由(Ⅰ)知,對(duì)?x∈(0,+∞),都有f(x)≥32,
∴f(-x)≥32,∵函數(shù)為奇函數(shù),∴f(-x)=-f(x)
∴-f(x)≥32,∴f(x)≤-32
即存在常數(shù)B=-32,對(duì)?x∈(-∞,0),都有f(x)≤B,
∴函數(shù)在(-∞,0)上有上界.----------------------------(9分)
(Ⅲ)∵,
由f'(x)=0得,∵a>0,b>0
,∵[m,n]?(0,+∞),∴,--------------------------------(10分)
∵當(dāng)時(shí),f'(x)<0,∴函數(shù)f(x)在(0,)上是減函數(shù);
當(dāng)時(shí),f'(x)>0,∴函數(shù)f(x)在(,+∞)上是增函數(shù);
是函數(shù)的在區(qū)間(0,+∞)上的最小值點(diǎn),------------------------------(11分)
①當(dāng)時(shí),函數(shù)f(x)在[m,n]上是增函數(shù);
∴f(m)≤f(x)≤f(n)
∵m、n是常數(shù),∴f(m)、f(n)都是常數(shù)
令f(m)=A,f(n)=B,
∴對(duì)?x∈[m,n],?常數(shù)A,B,都有A≤f(x)≤B
即函數(shù)在[m,n]上既有上界又有下界-------------------------(12分)
②當(dāng) 時(shí)函數(shù)f(x)在[m,n]上是減函數(shù)
∴對(duì)?x∈[m,n]都有f(n)≤f(x)≤f(m)
∴函數(shù)在[m,n]上有界.-------------------------(13分)
③當(dāng)時(shí),函數(shù)f(x)在[m,n]上有最小值f(x)min=
,令B=f(m)、f(n)中的最大者
則對(duì)?x∈[m,n],?常數(shù)A,B,都有A≤f(x)≤B
∴函數(shù)在[m,n]上有界.
綜上可知函數(shù)是[m,n]上的有界函數(shù)--------------------(14分)
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.綜合性強(qiáng),是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•揭陽(yáng)二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)  

(Ⅰ)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說(shuō)明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說(shuō)明理由;
(Ⅲ)若函數(shù)f(x)在D上既有上界又有下界,則稱函數(shù)f(x)在D上有界,函數(shù)f(x)叫做有界函數(shù).試探究函數(shù)f(x)=ax3+
b
x
(a>0,b>0a,b是常數(shù))是否是[m,n](m>0,n>0,m、n是常數(shù))上的有界函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•揭陽(yáng)二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)

(Ⅰ)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說(shuō)明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說(shuō)明理由;
(Ⅲ)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=
1
2
為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)

(Ⅰ)試判斷函數(shù)f(x)=x3+數(shù)學(xué)公式在(0,+∞)上是否有下界?并說(shuō)明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說(shuō)明理由;
(Ⅲ)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2數(shù)學(xué)公式,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=數(shù)學(xué)公式為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年廣東省揭陽(yáng)市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)

(Ⅰ)試判斷函數(shù)f(x)=x3+在(0,+∞)上是否有下界?并說(shuō)明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說(shuō)明理由;
(Ⅲ)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案