若=,=,其中>0,記函數(shù)f(x)=2·,f(x)圖象中相鄰兩條對(duì)稱(chēng)軸間的距離為,
(1)求的值;
(2)求f(x)的單調(diào)減區(qū)間和f(x)的最大值及取得最大值時(shí)x的取值集合.
(1)
(2) ∴f(x)的單調(diào)減區(qū)間為
當(dāng)2x-=即x=時(shí)fmax(x)= 3
∴f(x)的最大值為3及取得最大值時(shí)x的取值集合為
解析試題分析:、解:
∵= =
故f(x)=2·=2
=
4分
(1)由題意可知,∴ 6分
(2)由(1)得f(x)=2sin(2x-)+1
由
∴f(x)的單調(diào)減區(qū)間為 8分
當(dāng)2x-=即x=時(shí)fmax(x)= 3
∴f(x)的最大值為3及取得最大值時(shí)x的取值集合為 12分
考點(diǎn):三角函數(shù)的性質(zhì)
點(diǎn)評(píng):解決的關(guān)鍵是將函數(shù)化為單一三角函數(shù),借助于函數(shù)的性質(zhì)來(lái)求解得到單調(diào)性和最值,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量=(cosx,sinx), ,且x∈[0,].
(1)求
(2)設(shè)函數(shù)=+,求函數(shù)的最值及相應(yīng)的的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義在R上的函數(shù)f(x)=的周期為,
且對(duì)一切xR,都有f(x);
(1)求函數(shù)f(x)的表達(dá)式;
(2)若g(x)=f(),求函數(shù)g(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)為偶函數(shù),且其圖象上相鄰兩對(duì)稱(chēng)軸之間的距離為.
(1)求函數(shù)的表達(dá)式;(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(8分)已知函數(shù).
(1)寫(xiě)出它的振幅、周期、頻率和初相;
(2)求這個(gè)函數(shù)的單調(diào)遞減區(qū)間;
(3)求出使這個(gè)函數(shù)取得最大值時(shí),自變量的取值集合,并寫(xiě)出最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;
(2)作出函數(shù)在一個(gè)周期內(nèi)的圖象。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知函數(shù),(其中A>0,>0,<的部分圖象如圖所示,求這個(gè)函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)
已知向量:,函數(shù),若相鄰兩對(duì)稱(chēng)軸間的距離為
(Ⅰ)求的值,并求的最大值及相應(yīng)x的集合;
(Ⅱ)在△ABC中,分別是A,B,C所對(duì)的邊,△ABC的面積,求邊的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com