如圖,已知四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點,且BF⊥平面ACE.
(1)求證:AE平面BDF;
(2)求三棱錐D﹣ACE的體積.
證明:(1)設(shè)AC∩BD=G,連接GF.
因為BF⊥面ACE,CE面ACE,所以BF⊥CE.
因為BE=BC,所以F為EC的中點.
在矩形ABCD中,G為AC中點,所以GFAE.
因為AE面BFD,GF面BFD,
所以AE面BFD.
(2)取AB中點O,連接OE.因為AE=EB,所以O(shè)E⊥AB.
因為AD⊥面ABE,OE面ABE,所以O(shè)E⊥AD,
所以O(shè)E⊥面ADC.
因為BF⊥面ACE,AE面ACE,所以BF⊥AE.
因為CB⊥面ABE,AE面ABE,所以AE⊥BC.
又BF∩BC=B,所以AE⊥平面BCE.
又BE面BCE,所以AE⊥EB.
所以,
故三棱錐E﹣ADC的體積為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點B到點P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求棱錐A-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切
⊙O于D,∠MDA=45°,則∠DCB=
135°
135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點E,F(xiàn)分別是線段PB,AD的中點
(1)求證:FE∥平面PCD;
(2)求異面直線DE與AB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點B到點P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點,F(xiàn)是PD的中點.
(1)求證:PB∥平面AFC;
(2)求多面體PABCF的體積.

查看答案和解析>>

同步練習(xí)冊答案