過橢圓的右焦點(diǎn)F作直線交橢圓于M,N兩點(diǎn),設(shè)
(1)求直線的斜率;
(2)設(shè)M,N在直線上的射影分別為M1,N1,求的值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
已知橢圓的一個(gè)頂點(diǎn)為(-2,0),焦點(diǎn)在x軸上,且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)斜率為1的直線與橢圓交于A、B兩點(diǎn),O為原點(diǎn),當(dāng)△AOB的面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


本小題滿分14分)
已知橢圓的左、右焦點(diǎn)分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且的最小值不小于。
(1)證明:橢圓上的點(diǎn)到F2的最短距離為
(2)求橢圓的離心率e的取值范圍;
(3)設(shè)橢圓的短半軸長(zhǎng)為1,圓F2軸的右交點(diǎn)為Q,過點(diǎn)Q作斜率為的直線與橢圓相交于A、B兩點(diǎn),若OA⊥OB,求直線被圓F2截得的弦長(zhǎng)S的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本題14分) 設(shè)直線(其中,為整數(shù))與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分14分)
已知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,是首項(xiàng)為,公比為的等比數(shù)列,且滿足,其中.
(Ⅰ)求的值;
(Ⅱ)若數(shù)列與數(shù)列有公共項(xiàng),將所有公共項(xiàng)按原順序排列后構(gòu)成一個(gè)新數(shù)列,求數(shù)列的通項(xiàng)公式;
(Ⅲ)記(Ⅱ)中數(shù)列的前項(xiàng)之和為,求證:
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則橢圓的離心率等于(   )
A. B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.已知、是橢圓的兩個(gè)焦點(diǎn),為橢圓上一點(diǎn),且,則的面積         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若焦點(diǎn)在軸上的橢圓的離心率為,則=                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)任意的實(shí)數(shù)k,直線y=kx+1與橢圓恒有兩個(gè)交點(diǎn),則的取值范圍____

查看答案和解析>>

同步練習(xí)冊(cè)答案