【題目】下列命題中為真命題的是( ) .
A.“若,則”的否命題B.“若,則”的逆命題.
C.“若,則”的否命題D.“若,則”的逆否命題
【答案】B
【解析】
選項(xiàng):由其逆命題為假,可知否命題為假;
選項(xiàng):寫出原命題的逆命題,分類討論后可判斷真假;
選項(xiàng):寫出原命題的否命題,可通過反例得到否命題為假;
選項(xiàng):通過判斷原命題為假,可知其逆否命題為假.
中,“若,則”的逆命題為“若,則”
當(dāng)時(shí),或,可知逆命題為假
逆命題與否命題互為逆否命題,同真假 原命題的否命題為假,錯(cuò)誤;
中,原命題的逆命題為“若,則”
當(dāng)時(shí),,則,命題成立;
當(dāng)時(shí),,又 ,命題成立
原命題的逆命題為真,正確;
中,原命題的否命題為“若,則”
當(dāng)時(shí), 原命題的否命題為假,錯(cuò)誤;
中,若,則或,可知原命題為假
原命題與其逆否命題同真假 原命題的逆否命題為假,錯(cuò)誤.
故選:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:,焦點(diǎn)為,其準(zhǔn)線與軸交于點(diǎn).橢圓:分別以、為左、右焦點(diǎn),其離心率,且拋物線和橢圓的一個(gè)交點(diǎn)記為.
(1)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,若直線經(jīng)過橢圓的右焦點(diǎn),且與拋物線相交于,兩點(diǎn),若弦長等于的周長,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰中, ,腰長為, 、分別是邊、的中點(diǎn),將沿翻折,得到四棱錐,且為棱中點(diǎn), .
(Ⅰ)求證: 平面;
(Ⅱ)在線段上是否存在一點(diǎn),使得平面?若存在,求二面角的余弦值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),記函數(shù)的極小值為,若恒成立,求滿足條件的最小整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、、為實(shí)數(shù),,,記集合,,則下列命題為真命題的是( )
A.若集合的元素個(gè)數(shù)為2,則集合的元素個(gè)數(shù)也一定為2
B.若集合的元素個(gè)數(shù)為2,則集合的元素個(gè)數(shù)也一定為2
C.若集合的元素個(gè)數(shù)為3,則集合的元素個(gè)數(shù)也一定為3
D.若集合的元素個(gè)數(shù)為3,則集合的元素個(gè)數(shù)也一定為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是滿足下述條件的所有函數(shù)組成的集合:對于函數(shù)定義域內(nèi)的任意兩個(gè)自變量、,均有成立.
(1)已知定義域?yàn)?/span>的函數(shù),求實(shí)數(shù)、的取值范圍;
(2)設(shè)定義域?yàn)?/span>的函數(shù),且,求正實(shí)數(shù)的取值范圍;
(3)已知函數(shù)的定義域?yàn)?/span>,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下結(jié)論錯(cuò)誤的是( )
A.命題“若,則”的逆否命題為“若,則”
B.命題“”是“”的充分條件
C.命題“若,則有實(shí)根”的逆命題為真命題
D.命題“,則或”的否命題是“,則且”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面,且, , 是邊的中點(diǎn).
(1)求證: 平面;
(2)若是線段上的動點(diǎn)(不含端點(diǎn)):問當(dāng)為何值時(shí),二面角余弦值為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com