(本題滿分15分)如圖,在底面是菱形的四棱錐P—ABCD中,∠ABC=60
0,PA=AC=
a,PB=PD=
,點E在PD上,且PE:ED=2:1.
(1)證明:PA⊥平面ABCD;
(2)求以AC為棱,EAC與DAC為面的二面角
的大小.
(1)略(2)
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在體積為1的三棱柱ABC-A1B1C1中,側棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P為線段AB上的動點.
(1)求證:CA1⊥C1P;
(2)當AP為何值時,二面角C1-PB1-A1的大小為?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分) 如圖,在三棱錐
中,
,
為
的中點.
(1)求證:
面
;
(2)求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在直三棱柱
中,
.
(Ⅰ)求證:
∥平面
;
(Ⅱ)求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)如圖所示,在直三棱柱
中,
、
、
分別是
、
、
的中點,
是
上的點.
(1)求直線
與平面
所成角的正切值的最大值;
(2)求證:直線
平面
;
(3)求直線
與平面
的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題10分)
如圖,在多面體
中,四邊形
是正方形,
∥
,
,
,
,
.
(1)求二面角
的正切值;
(2)求證:平面
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,四棱錐P—ABCD的底面ABCD是
邊長為2的菱形,
,E是CD的中點,PA
底面ABC
D,PA=4
(1)證明:若F是棱PB的中點,求證:EF//平面PAD;
(2)求平面PAD和平面PBE所成二面角(銳角)的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側棱PC上的動點。
(1)求四棱錐P-ABCD的體積;
(2)若點E為PC的中點,
,求證EO//平面PAD;
(3)是否不論點E在何位置,都有BD⊥AE?證明你的結論。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
教室內有一把尺子,無論怎樣放置,地面上總有這樣的直線與該直尺所在直線( ).
A.平行 | B.垂直 | C.相交但不垂直 | D.異面 |
查看答案和解析>>