(本小題滿分10分)
如圖,AB是⊙O的直徑 ,AC是弦 ,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E.OE交AD于點F.
(1)求證:DE是⊙O的切線;
(2)若,求的值.
(1)結合同弧所對的圓周角相等來求解直線DE⊥OD,同時OD是圓的半徑來說明是切線
(2)根據題意可知△AED∽△ADB可得 AD2=AC·AB
求解得到AE,又由△AEF∽△DOF,得到比值。
解析試題分析:略證 (1) 連結OD,可得∠ODA=∠OAD=∠DAC ……2分
∴OD∥AE 又AE⊥DE …………3分
∴DE⊥OD,又OD為半徑 ∴ DE是的⊙O切線 …………5分
⑵ 提示:過D作DH⊥AB于H 則有∠DOH=∠CAB
Cos∠DOH=cos∠CAB= ……………………6分
設OD=5x,則AB=10x,OH=3x,DH=4x
∴AH=8x AD2=80x2
由△AED∽△ADB可得 AD2=AC·AB=AC·10x
∴AE=8X…………8分
又由△AEF∽△DOF 可得AF∶DF= AE∶OD =;
∴=……10分
考點:圓的切線問題,以及相似比的運用。
點評:解決該試題的關鍵是利用垂直關系證明相切同時利用相似比來求解比值問題,屬于基礎題。
科目:高中數學 來源: 題型:解答題
(本題滿分10分)
在極坐標系中,已知兩點O(0,0),B(2,).
(Ⅰ)求以OB為直徑的圓C的極坐標方程,然后化成直角坐標方程;
(Ⅱ)以極點O為坐標原點,極軸為軸的正半軸建立平面直角坐標系,直線l的參數方程為(t為參數).若直線l與圓C相交于M,N兩點,圓C的圓心為C,求DMNC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com