精英家教網 > 高中數學 > 題目詳情

(本小題滿分10分)
如圖,AB是⊙O的直徑 ,AC是弦 ,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E.OE交AD于點F.

(1)求證:DE是⊙O的切線;
(2)若,求的值.

(1)結合同弧所對的圓周角相等來求解直線DE⊥OD,同時OD是圓的半徑來說明是切線
(2)根據題意可知△AED∽△ADB可得 AD2=AC·AB
求解得到AE,又由△AEF∽△DOF,得到比值。

解析試題分析:略證 (1) 連結OD,可得∠ODA=∠OAD=∠DAC ……2分
∴OD∥AE  又AE⊥DE             …………3分
∴DE⊥OD,又OD為半徑 ∴ DE是的⊙O切線 …………5分
⑵ 提示:過D作DH⊥AB于H 則有∠DOH=∠CAB
 
Cos∠DOH=cos∠CAB=   ……………………6分
設OD=5x,則AB=10x,OH=3x,DH=4x
∴AH=8x   AD2=80x2
由△AED∽△ADB可得 AD2=AC·AB=AC·10x  
∴AE=8X…………8分
又由△AEF∽△DOF   可得AF∶DF= AE∶OD =;
=……10分
考點:圓的切線問題,以及相似比的運用。
點評:解決該試題的關鍵是利用垂直關系證明相切同時利用相似比來求解比值問題,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知均在⊙O上,且為⊙O的直徑.
(1)求的值;
(2)若⊙O的半徑為,交于點,且、為弧的三等分點,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中,,過點的直線與其外接圓交于點,交延長線于點.
(1)求證:; (2)若,求 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)
如圖,在中,,平分于點,點上,。
(I)求證:的外接圓的切線;
(II)若,,求的長。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)
如圖,已知與圓相切于點,經過點的割線交圓于點、,的平分線分別交于點、

求證:(1) .
(2) 若的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分)
在極坐標系中,已知兩點O(0,0),B(2,).

(Ⅰ)求以OB為直徑的圓C的極坐標方程,然后化成直角坐標方程;
(Ⅱ)以極點O為坐標原點,極軸為軸的正半軸建立平面直角坐標系,直線l的參數方程為t為參數).若直線l與圓C相交于M,N兩點,圓C的圓心為C,求DMNC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在△中,∠ 是角平分線,是△的外接圓。

⑴求證:是⊙的切線;
⑵如果,求的長。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)如圖,在中,,平分于點,點上,

(1)求證:是△的外接圓的切線;
(2)若,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

A. 選修4-1:幾何證明選講
已知點在圓直徑的延長線上,切圓點, 的平分線分別交、于點、.
(1)求的度數;
(2)若,求的值.

查看答案和解析>>

同步練習冊答案