【題目】某學校高一年級學生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內(nèi),發(fā)布成績使用等級制.各等級劃分標準見下表.

規(guī)定:三級為合格等級,D為不合格等級.為了解該校高一年級學生身體素質(zhì)情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計.按照的分組作出頻率分布直方圖如圖1所示,樣本中分數(shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.

I)求和頻率分布直方圖中的的值,并估計該校高一年級學生成績是合格等級的概率;

II)在選取的樣本中,從兩個等級的學生中隨機抽取2名學生進行調(diào)研,求至少有一名學生是等級的概率.

【答案】I;(II.

【解析】

試題(I)根據(jù)頻率直方圖的相關(guān)概率易求,依據(jù)樣本估計總體的思想可得該校高一年級學生成績是合格等級的概率;(II)記至少有一名學生是等級事件為,求事件對立事件的的概率,可得.

試題解析:(I)由題意可知,樣本容量

因為成績是合格等級人數(shù)為:人,抽取的50人中成績是合格等級的頻率為,依據(jù)樣本估計總體的思想,所以,該校高一年級學生成績是合格等級的概率為

II)由莖葉圖知,等級的學生共有3人,等級學生共有人,記等級的學生為,

等級學生為,則從8名學生中隨機抽取2名學生的所有情況為:

28個基本事件

至少有一名學生是等級事件為,則事件的可能結(jié)果為

10

因此

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的參數(shù)方程為 (t為參數(shù)),其中p>0,焦點為F,準線為l.過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標是3,則p=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了了解新生的飲食習慣,在某學院大一年級名學生中進行了抽樣調(diào)查,發(fā)現(xiàn)喜歡甜品的占.這名學生中南方學生共。南方學生中有人不喜歡甜品.

(1)完成下列列聯(lián)表

喜歡甜品

不喜歡甜品

合計

南方學生

北方學生

合計

(2)根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

(3)已知在被調(diào)查的南方學生中有名數(shù)學系的學生,其中名不喜歡甜品;名物理系的學生,其中名不喜歡甜品.現(xiàn)從這兩個系的學生中,各隨機抽取記抽出的人中不喜歡甜品的人數(shù)為,的分布列和數(shù)學期望.

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)若曲線上點處的切線過點,求函數(shù)的單調(diào)減區(qū)間;

(II)若函數(shù)在區(qū)間內(nèi)無零點,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中

①若,則函數(shù)取得極值;

②直線與函數(shù)的圖像不相切;

③若(為復(fù)數(shù)集),且,則的最小值是3;

④定積分.

正確的有__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若是函數(shù)的唯一極值點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為 和p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為 ,求p的值;
(2)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)10≤x1<x2<x3<x4≤104 , x5=105 , 隨機變量ξ1取值x1、x2、x3、x4、x5的概率均為0.2,隨機變量ξ2取值 、 、 的概率也均為0.2,若記Dξ1、Dξ2分別為ξ1、ξ2的方差,則(
A.Dξ1>Dξ2
B.Dξ1=Dξ2
C.Dξ1<Dξ2
D.Dξ1與Dξ2的大小關(guān)系與x1、x2、x3、x4的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的圖像過點,且在點處的切線方程為.

1)求的解析式;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案