已知z∈C,且f(z)=
z-1z+1
,則f(i)=
i
i
分析:由題意可得f(i)=
i-1
i+1
,把分子和分母同時(shí)乘以分母的共軛復(fù)數(shù),運(yùn)算求得結(jié)果.
解答:解:由題意可得f(i)=
i-1
i+1
=
(i-1)(1-i)
(i+1)(1-i)
=
2i
2
=i,
故答案為:i.
點(diǎn)評(píng):本題主要考查求函數(shù)的值的方法,兩個(gè)復(fù)數(shù)代數(shù)形式的除法法則的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿(mǎn)足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線(xiàn)C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
④設(shè)定義在R上的兩個(gè)函數(shù)f(x)、g(x)都有最小值,且對(duì)任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯(cuò)誤的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知z∈C,且數(shù)學(xué)公式,則f(i)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知z∈C,且f(z)=
z-1
z+1
,則f(i)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省南京市金陵中學(xué)高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

[選做題]在下面A,B,C,D四個(gè)小題中只能選做兩題,每小題10分,共20分.
A.選修4-1:幾何證明選講
如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使CD=AC,連接AD交⊙O于點(diǎn)E,連接BE與AC交于點(diǎn)F,判斷BE是否平分∠ABC,并說(shuō)明理由.
B.選修4-2:短陣與變換
已知矩陣,矩陣M對(duì)應(yīng)的變換把曲線(xiàn)y=sinx變?yōu)榍(xiàn)C,求C的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C的極坐標(biāo)方程是,求曲線(xiàn)C的普通方程.
D.選修4-5:不等式選講
已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案