【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.

【答案】
(1)解:圓C1 (φ為參數(shù)),

轉(zhuǎn)化成直角坐標(biāo)方程為:(x﹣2)2+y2=4

即:x2+y2﹣4x=0

轉(zhuǎn)化成極坐標(biāo)方程為:ρ2=4ρcosθ

即:ρ=4cosθ

圓C2 (φ為參數(shù)),

轉(zhuǎn)化成直角坐標(biāo)方程為:x2+(y﹣1)2=1

即:x2+y2﹣2y=0

轉(zhuǎn)化成極坐標(biāo)方程為:ρ2=2ρsinθ

即:ρ=2sinθ


(2)解:射線OM:θ=α與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q

則:P(2+2cosα,2sinα),Q(cosα,1+sinα)

則:|OP|= =

|OQ|= =

則:|OP||OQ|=

=

設(shè)sinα+cosα=t(

則:

則關(guān)系式轉(zhuǎn)化為:

4 =

由于:

所以:(|OP||OQ|)max=


【解析】(1)首先把兩圓的參數(shù)方程轉(zhuǎn)化成直角坐標(biāo)方程,再把直角坐標(biāo)方程為轉(zhuǎn)化成極坐標(biāo)方程.(2)根據(jù)圓的坐標(biāo)形式.利用兩點(diǎn)間的距離公式,再利用換元法進(jìn)一步求出最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖半圓柱OO1的底面半徑和高都是1,面ABB1A1是它的軸截面(過上下底面圓心連線OO1的平面),Q,P分別是上下底面半圓周上一點(diǎn).
(1)證明:三棱錐Q﹣ABP體積VQ﹣ABP ,并指出P和Q滿足什么條件時(shí)有AP⊥BQ
(2)求二面角P﹣AB﹣Q平面角的取值范圍,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)上的點(diǎn)M(x0 , y0)到點(diǎn)N(2,0)距離的最小值為
(1)求拋物線C的方程;
(2)若x0>2,圓E(x﹣1)2+y2=1,過M作圓E的兩條切線分別交y軸A(0,a),B(0,b)兩點(diǎn),求△MAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計(jì)劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,若對(duì)任意,存在,使得 成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,若存在ak , 使得“ak>ak1且ak>ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個(gè)H值.現(xiàn)有如下數(shù)列:①an=1﹣2n;②an=sinn;③an= ④an=lnn﹣n,則存在H值的數(shù)列有( )個(gè).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中xOy,直線C1的參數(shù)方程為 (t是參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρ=sinθ﹣cosθ(θ是參數(shù)).
(Ⅰ)將曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,并判斷曲線C2所表示的曲線;
(Ⅱ)若M為曲線C2上的一個(gè)動(dòng)點(diǎn),求點(diǎn)M到直線C1的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) f(x)=,其中 c>a>0,c>b>0. a,b,c 是△ABC 的三條邊長,給出下列命題:

對(duì)于x(-∞,1),都有 f(x)>0;

存在 x>0,使,不能構(gòu)成一個(gè)三角形的三邊長;

若△ABC 為鈍角三角形,則存在 x(1,2),使 f(x)=0.

則其中所有正確結(jié)論的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一袋中有大小相同的4個(gè)紅球和2個(gè)白球,給出下列結(jié)論:

①從中任取3球,恰有一個(gè)白球的概率是

②從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為;

③現(xiàn)從中不放回的取球2次,每次任取1球,則在第一次取到紅球的條件下,第二次再次取到紅球的概率為;

④從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為.

其中所有正確結(jié)論的序號(hào)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案