已知,不等式的解集為.
(1)求的值;
(2)若對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
(1)2;(2).
解析試題分析:(1)我們首先求出不等式的解集,這個(gè)解集與相等,由此可求得;(2),一種方法,這個(gè)函數(shù)是分段函數(shù),我們把它化為一般的分段函數(shù)表達(dá)式,以便求出它的最大(小)值,從而求得的最大值,得到的取值范圍,也可應(yīng)用絕對(duì)值不等式的性質(zhì),求得最大值.
試題解析:解法一:(1)由不等式|2x-a|-a≤2,得|2x-a|≤2+a,
∵解集不空,∴2+a≥0.
解不等式可得{x∣-1≤x≤1+a}. 3分
∵-1≤x≤3,∴1+a﹦3,即a=2. 5分
(2)記g(x)=f(x)-f(x+2)=|2x-2|-|2x+2|, 6分
4,(x≤-1)
則g(x)=-4x,(-1﹤x﹤1). 8分
-4,(x≥1)
所以-4≤g(x)≤4,∴|g(x)|≤4,因此m≥4. 10分
解法二:∵f(x)-f(x+2)=|2x-2|-|2x+2|,
∵|2x-2|-|2x+2|≤|(2x-2)-(2x+2)|=4. 7分
|2x-2|-|2x+2|≥|2x|-2-(|2x|+2)=-4. 9分
∴-4≤|2x-2|-|2x+2|≤4.
∴|f(x)-f(x+2)|≤4.
∴m≥4. 10分
考點(diǎn):(1)解絕對(duì)值不等式;(2)分段函數(shù)的最值,不等式恒成立問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值。
(2)若函數(shù)在[1,4]上是減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的值域;
(2)設(shè),若存在,使得以為三邊長(zhǎng)的三角形不存在,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,函數(shù)的圖像與直線的相鄰兩個(gè)交點(diǎn)之間的距離為.
(1)求的值;
(2)求函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:對(duì)于函數(shù),若存在非零常數(shù),使函數(shù)對(duì)于定義域內(nèi)的任意實(shí)數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
(2)試求一個(gè)函數(shù),使(為常數(shù),)為廣義周期函數(shù),并求出它的一個(gè)廣義周期和周距;
(3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/1/aujvk.png" style="vertical-align:middle;" />時(shí),求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)的定義域?yàn)镋,值域?yàn)镕.
(1)若E={1,2},判斷實(shí)數(shù)λ=lg22+lg2lg5+lg5﹣與集合F的關(guān)系;
(2)若E={1,2,a},F(xiàn)={0,},求實(shí)數(shù)a的值.
(3)若,F(xiàn)=[2﹣3m,2﹣3n],求m,n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com