16.已知函數(shù)y=f(x)是函數(shù)y=3x的反函數(shù),則$f({\frac{1}{9}})$=( 。
A.-2B.2C.3D.-3

分析 利用指數(shù)函數(shù)的反函數(shù)是對數(shù)函數(shù),直接求出函數(shù)的反函數(shù),然后求出f(9)的值.

解答 解:指數(shù)函數(shù)的反函數(shù)是對數(shù)函數(shù),所以函數(shù)y=3x的反函數(shù)為y=f(x)=log3x
所以f($\frac{1}{9}$)=log3$\frac{1}{9}$=-2.
故選A.

點評 本題是基礎(chǔ)題,考查反函數(shù)的求法以及函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知向量$\overrightarrow{m}$=($\sqrt{3}sin\frac{x}{4},1$),$\overrightarrow{n}$=($cos\frac{x}{4},co{s}^{2}\frac{x}{4}$).
(1)若$\overrightarrow{m}•\overrightarrow{n}$=1,求cos($\frac{2π}{3}$-x)的值;
(2)記f(x)=$\overrightarrow{m}•\overrightarrow{n}$在△ABC中角A,B,C的對邊分別為a,b,c,且滿足(2sinA-sinC)cosB=sinBcosC,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+4,-3≤x≤0}\\{{x}^{2}-2x,0<x≤4}\\{-x+2,4<x≤5}\end{array}\right.$,則f(f(f(5)))=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.方程4x+2x=a2+a有正根,則實數(shù)a的取值范圍是(-∞,-2)∪(1,+∞);若函數(shù)f(x)=ln(x2+ax+1)的值域為R,則實數(shù)a的取值范圍是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若不等式組 $\left\{\begin{array}{l}x-y+1≥0\\ y+\frac{1}{2}≥0\\ x+y-1≤0\end{array}\right.$表示的區(qū)域為Ω,不等式 ${({x-\frac{1}{2}})^2}+{y^2}≤\frac{1}{4}$表示的區(qū)域為τ,向Ω區(qū)域均勻隨機撒360顆芝麻,則落在區(qū)域τ中芝麻數(shù)約為( 。
A.114B.10C.150D.50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知集合E={x||x-1|≥m},F(xiàn)=$\{x|\frac{10}{x+6}>1\}$.
(1)若m=3,求E∩F;
(2)若E∩F=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知等差數(shù)列{an}中,a1=1,a7=-11,
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前k項和Sk=-80,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}f(x+5),x>2\\{e^x},-2≤x≤2\\ f(-x),x<-2\end{array}$,則f(-2016)=( 。
A.e2B.eC.1D.$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+1(x>0)\\ π(x=0)\\ 0(x<0)\end{array}$,則f(f(f(-2016)))=π2+1.

查看答案和解析>>

同步練習冊答案