【題目】已知拋物線C=2px經(jīng)過點(diǎn)(1,2).過點(diǎn)Q(0,1)的直線l與拋物線C有兩個不同的交點(diǎn)A,B,且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍;

設(shè)O為原點(diǎn),,求證為定值

【答案】(1) 取值范圍是-∞,-3)-3,0)(0,1)

(2)證明過程見解析

【解析】分析:(1)先確定p,再設(shè)直線方程,與拋物線聯(lián)立,根據(jù)判別式大于零解得直線l的斜率的取值范圍,最后根據(jù)PA,PBy軸相交,舍去k=3,(2)先設(shè)Ax1,y1),Bx2,y2),與拋物線聯(lián)立,根據(jù)韋達(dá)定理可得再由,利用直線PA,PB的方程分別得點(diǎn)M,N的縱坐標(biāo),代入化簡可得結(jié)論.

詳解:解:Ⅰ)因?yàn)閽佄锞y2=2px經(jīng)過點(diǎn)P(1,2),

所以4=2p,解得p=2,所以拋物線的方程為y2=4x

由題意可知直線l的斜率存在且不為0,

設(shè)直線l的方程為y=kx+1(k≠0).

依題意,解得k<00<k<1.

PA,PBy軸相交,故直線l不過點(diǎn)(1,-2).從而k-3.

所以直線l斜率的取值范圍是-∞,-3)-3,0)(0,1).

(Ⅱ)設(shè)Ax1,y1),Bx2y2).

由(I)知,

直線PA的方程為y–2=

x=0,得點(diǎn)M的縱坐標(biāo)為

同理得點(diǎn)N的縱坐標(biāo)為

,

所以

所以為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)所在的平面內(nèi),給出下列關(guān)系式:

;

;

.

則點(diǎn)依次為的(

A.內(nèi)心、重心、垂心B.重心、內(nèi)心、垂心C.重心、內(nèi)心、外心D.外心、垂心、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,和兩點(diǎn),給出如下結(jié)論其中真命題的序號是________

①當(dāng)變化時(shí),分別經(jīng)過定點(diǎn);

②不論為何值時(shí),都互相垂直;

③如果交于點(diǎn),則的最大值是2;

為直線上的點(diǎn),則的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)fx=4sin2x+)(x∈R),有下列命題:

①y=fx)的表達(dá)式可改寫為y=4cos2x﹣);

②y=fx)是以為最小正周期的周期函數(shù);

③y=fx)的圖象關(guān)于點(diǎn)對稱;

④y=fx)的圖象關(guān)于直線x=﹣對稱.

其中正確的命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形是正方形,平面,平面,為棱的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件需另投人成本萬元.當(dāng)年產(chǎn)量不足80千件時(shí),(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí),萬元,每千件產(chǎn)品的售價(jià)為50萬元,該廠生產(chǎn)的產(chǎn)品能全部售完.

1)寫出年利潤萬元關(guān)于千件的函數(shù)關(guān)系式;

2)當(dāng)年產(chǎn)量為多少千件時(shí)該廠當(dāng)年的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

1)若是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率.

2)若,,求方程沒有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,分別是,的中點(diǎn).

1)求證:平面;

2)求證:平面平面

查看答案和解析>>

同步練習(xí)冊答案