如圖梯形ABCD,AD∥BC,∠A=900,過點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE

折成直二面角D-EC-AB.

(1)求直線BD與平面ABCE所成角的正切值;

(2)設(shè)線段AB的中點(diǎn)為,在直線DE上是否存在一點(diǎn),使得∥面BCD?若存在,請指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請說明理由;

   

 

【答案】

(1)             (2)當(dāng)為線段DE的中點(diǎn)時,PM∥平面BCD

【解析】

試題分析:(1)解:連接BE,因為梯形ABCD,∠A=900,CE∥AB,所以DE⊥EC

面DEC⊥面ABCE且交于EC ,, 所以∠DBE為所求

設(shè)BC=1,有AB="1" AD=2,所以DE="1" EB=,所以 

(2)存在點(diǎn),當(dāng)為線段DE的中點(diǎn)時,PM∥平面BCD

取CD的中點(diǎn)N,連接BN,MN,則MNPB

所以PMNB為平行四邊形,所以PM∥BN

因為BN在平面BCD內(nèi),PM不在平面BCD內(nèi),所以PM∥平面BCD 

考點(diǎn):用空間向量求直線與平面的夾角;直線與平面平行的性質(zhì).

點(diǎn)評:本小題主要考查空間線面關(guān)系、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,

以及空間想象能力、推理論證能力和運(yùn)算求解能力.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖梯形ABCD,AD∥BC,∠A=90°,過點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點(diǎn)為P,在直線DE上是否存在一點(diǎn)M,使得PM∥面BCD?若存在,請指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,梯形ABCD中,AB∥CD,S△DEC∶S△CEB=1∶2,則S△DEC∶S△EAB等于(    )

A.1∶6               B.1∶5                C.1∶4               D.1∶3

圖1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,梯形ABCD中,CD∥AB,AD=DC=CB=AB,E是AB中點(diǎn),將△ADE沿DE折起,使點(diǎn)A折到點(diǎn)P的位置,且二面角PDEC的大小為120°.

(1)求證:DE⊥PC;

(2)求直線PD與平面BCDE所成角的大小;

(3)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高二(上)10月段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖梯形ABCD,AD∥BC,∠A=90°,過點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點(diǎn)為P,在直線DE上是否存在一點(diǎn)M,使得PM∥面BCD?若存在,請指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請說明理由;

查看答案和解析>>

同步練習(xí)冊答案