(本小題滿分14分)
已知,設(shè):函數(shù)在R上單調(diào)遞減;:函數(shù)的圖象與x軸至少有一個(gè)交點(diǎn).如果P與Q有且只有一個(gè)正確,求的取值范圍.
解析試題分析:函數(shù)在R上單調(diào)遞減;
函數(shù)的圖象與x軸至少有一個(gè)交點(diǎn),
即≥0,解之得.
(1)若P正確,Q不正確,則
即. ……………………………… 6分
(2)若P不正確,Q正確,則
即 ……………………………… 12分
綜上可知,所求的取值范圍是. ……………… 14分
考點(diǎn):指數(shù)函數(shù)的單調(diào)性;二次函數(shù)的性質(zhì)與圖像。
點(diǎn)評(píng):此題主要考查二次函數(shù)的性質(zhì)和指數(shù)函數(shù)的性質(zhì),考查了分類討論的思想,是一道基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
命題p:實(shí)數(shù)滿足(其中),命題q:實(shí)數(shù)滿足
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知命題:方程有兩個(gè)不相等的實(shí)數(shù)根;命題:函數(shù)是上的單調(diào)增函數(shù).若“或”是真命題,“且”是假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)命題:方程無(wú)實(shí)數(shù)根;命題:函數(shù)的值域是.如果命題為真命題,為假命題,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,命題:對(duì)任意,不等式恒成立;命題:存在,使得成立
(Ⅰ)若為真命題,求的取值范圍;
(Ⅱ)當(dāng),若且為假,或為真,求的取值范圍。
(Ⅲ)若且是的充分不必要條件,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè)是實(shí)數(shù),對(duì)函數(shù)和拋物線:,有如下兩個(gè)命題:函數(shù)的最小值小于0;拋物線上的點(diǎn)到其準(zhǔn)線的距離.
已知“”和“”都為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a>0且a≠1,設(shè)命題p:函數(shù)y=+1在R上單調(diào)遞減,命題q:曲線y=+(2a-3)x+1與x軸交于不同的兩點(diǎn),如果“p∨q”為真,且“p∧q”為假,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com