已知向量
a
=(3cosα,3sinα)
,
b
=(4cosβ,4sinβ)
,且|
a
+2
b
|=7
,
(Ⅰ)求向量
a
b
的夾角θ;
(Ⅱ)求(2
a
-4
b
)•(3
a
+
b
)
的值.
分析:(Ⅰ)將|
a
+2
b
|=7
兩邊平方,結(jié)合向量的模長(zhǎng),即可求向量
a
、
b
的夾角θ;
(Ⅱ)由(2
a
-4
b
)•(3
a
+
b
)
,利用向量的乘法運(yùn)算,即可求得結(jié)論.
解答:解:(Ⅰ)∵
a
=(3cosα,3sinα)
,
b
=(4cosβ,4sinβ)
,且|
a
+2
b
|=7

∴9+16+4×12cos(α-β)=49
∴cos(α-β)=
1
2

∴cosθ=
1
2

∵0≤θ≤π,∴θ=
π
3

(Ⅱ)(2
a
-4
b
)•(3
a
+
b
)
=6|
a
|2
-10
a
b
-4
b
2
=6×9-10×3×
1
2
-64=-25.
點(diǎn)評(píng):本題考查向量的數(shù)量積,考查向量的夾角,考查向量的模,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a(
3
cosωx,sinωx)
,b(sinωx,0),且ω>0,設(shè)函數(shù)f(x)=(a+b)•b+k.
(1)若f(x)的圖象中相鄰兩條對(duì)稱軸間的距離不小于
π
2
,求ω的取值范圍.
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
,
π
6
]
時(shí),f(x)的最大值是2,求就k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(3cosα,2),
b
=(3,4sinα),且
a
b
,則銳角α等于(  )
A、
π
6
B、
π
4
C、
π
3
D、
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量
a
=(3cosα,3sinα)
,
b
=(4cosβ,4sinβ)
,且|
a
+2
b
|=7
,
(Ⅰ)求向量
a
b
的夾角θ;
(Ⅱ)求(2
a
-4
b
)•(3
a
+
b
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a=(3cosα,sinα),α∈(0,π2),e=(1,0),向量ae的夾角為β,求tan(α-β)的最大值,并求相應(yīng)的α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案