知橢圓的左右焦點(diǎn)為F1,F(xiàn)2,離心率為,以線段F1 F2為直徑的圓的面積為,   (1)求橢圓的方程;(2) 設(shè)直線l過橢圓的右焦點(diǎn)F2(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

(1)(2).

解析試題分析:(1)由以F1 F2為直徑的圓的面積為,確定c,由離心率確定a;(2)聯(lián)立方程組,結(jié)合韋達(dá)定理,得中點(diǎn)坐標(biāo),再求解.
試題解析: (1)由離心率為得: =        ①
又由線段F1 F2為直徑的圓的面積為得: c2=, c2=1      ②     2分
由①, ②解得a=,c=1,∴b2=1,∴橢圓方程為       4分
(2)由題意,,設(shè)l的方程為,代入橢圓方程,整理得,因為l過橢圓右焦點(diǎn),所以l與橢圓交與不同兩點(diǎn)A,B.
設(shè),中點(diǎn)為,則,,
,所以AB垂直平分線方程為
令y=0,得,由于.
考點(diǎn):橢圓方程的確定,直線與橢圓的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知分別是橢圓的左、右焦點(diǎn),橢圓的離心率
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個公共點(diǎn),且與直線相交于點(diǎn).求證:以線段為直徑的圓恒過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn).
(1)寫出的方程;
(2) ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,過拋物線的對稱軸上任一點(diǎn)作直線與拋物線交于兩點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn).

(1)設(shè),證明:
(2)設(shè)直線AB的方程是,過、兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知定點(diǎn)A(-2,0)、B(2,0),異于A、B兩點(diǎn)的動點(diǎn)P滿足,其中k1、k2分別表示直線AP、BP的斜率.

(Ⅰ)求動點(diǎn)P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點(diǎn)B的任意一點(diǎn),直線AN與(I)中軌跡E交予點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個交點(diǎn)為M(異于點(diǎn)B),點(diǎn)C(1,0),求證:|CM|·|CN| 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)、,若動點(diǎn)滿足
(1)求動點(diǎn)的軌跡曲線的方程;
(2)在曲線上求一點(diǎn),使點(diǎn)到直線:的距離最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的左、右焦點(diǎn)分別為,且橢圓過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn),試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓C經(jīng)過點(diǎn)(0,m) (m>0),且與直線y=-m相切,圓C被x軸截得弦長的最小值為1,記該圓的圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)是否存在曲線C與曲線E的一個公共點(diǎn),使它們在該點(diǎn)處有相同的切線?若存在,求出切線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的離心率,是其左右焦點(diǎn),點(diǎn)是直線(其中)上一點(diǎn),且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點(diǎn),滿足,求為坐標(biāo)原點(diǎn))面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案