設(shè)函數(shù),其中.
(1)當(dāng)時(shí),求的單調(diào)遞增區(qū)間;
(2)求實(shí)數(shù)的取值范圍,使得對(duì)任意的,都有.
(1);(2)
【解析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)大于零,求其單調(diào)增區(qū)間.
(2)解本題關(guān)鍵是做好以下轉(zhuǎn)化:對(duì)任意的,都有,即,
則. 設(shè)函數(shù),則要使對(duì)任意的,都有,須且只須.
解:(1)當(dāng)時(shí),,則, ……2分
由,得, ………………………………………………4分
所以的單調(diào)遞增區(qū)間為;……………………………………………6分
(2) 對(duì)任意的,都有,即,
則. ………………8分
設(shè)函數(shù),則要使對(duì)任意的,都有,須且只須.下面求的最大值. ………………10分
易得,,
由于,故,于是在內(nèi)單調(diào)遞減,
注意到,故當(dāng)時(shí),;當(dāng)時(shí),,
因此在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減, ……………13分
從而.
所以,即所求的實(shí)數(shù)的取值范圍是. ……………15分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分16分)設(shè)函數(shù),其中.
(1)若,求在的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當(dāng)時(shí),不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆甘肅省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù),其中.
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年福建省福州市高二上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題
(本小題滿(mǎn)10分)
設(shè)函數(shù),其中.
(1)若,求在的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高二下學(xué)期第二次月考理科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù),其中
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明不等式:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省浦城縣第一學(xué)期高二數(shù)學(xué)期末考試卷(文科) 題型:解答題
設(shè)函數(shù),其中.
(1)若,求在的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)的取值范圍;
(3)『附加題』是否存在最小的正整數(shù),使得當(dāng)時(shí),不等式恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com