某工藝品廠要生產(chǎn)如圖所示的一種工藝品,該工藝品由一個(gè)圓柱和一個(gè)半球組成,要求半球的半徑和圓柱的底面半徑之比為3:2,工藝品的體積為34πcm3.設(shè)圓柱的底面直徑為4x(cm),工藝品的表面積為S(cm2).
(1)試寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)怎樣設(shè)計(jì)才能使工藝品的表面積最?
精英家教網(wǎng)
(1)由題知圓柱的底面半徑為2x,半球的半徑為3x.
設(shè)圓柱的高為h(cm).因?yàn)楣に嚻返捏w積為34πcm3,所以
1
2
×
4
3
(3x)3+π(2x)2h=34π
,
所以h=
17
2x2
-
9
2
x
,所以工藝品的表面積為
S=
1
2
×4π(3x)2+2π(2x)h+π(3x)2+2×π(2x)2

=35πx2+4πx(
17
2x2
-
9
2
x)

=17π(x2+
2
x
).

由x>0且h=
17
2x2
-
9
2
x>0
,得0<x<
351
3
.

所以S關(guān)于x的函數(shù)關(guān)系式是S=17π(x2+
2
x
)
0<x<
351
3
.

(2)由(1)知,S′=17π(2x-
2
x
)=
34π(x3-1)
x2
,0<x<
351
3
.
令S'=0,得x=1.
當(dāng)0<x<1時(shí),S'<0,所以S關(guān)于x∈(0,1]是單調(diào)減函數(shù);
當(dāng)1<x<
351
3
時(shí),S'>0,所以S關(guān)于x∈[1,
351
3
)
是單調(diào)增函數(shù).
所以,當(dāng)x=1時(shí),S取得最小值Smin=17π(12+
2
1
)
=51π,此時(shí)h=4.
答:按照圓柱的高為4cm,圓柱的底面半徑為2cm,半球的半徑為3cm設(shè)計(jì),工藝品的表面積最小,為51πcm2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某工藝品廠要生產(chǎn)如圖所示的一種工藝品,該工藝品由一個(gè)圓柱和一個(gè)半球組成,要求半球的半徑和圓柱的底面半徑之比為3:2,工藝品的體積為34πcm3.設(shè)圓柱的底面直徑為4x(cm),工藝品的表面積為S(cm2).
(1)試寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)怎樣設(shè)計(jì)才能使工藝品的表面積最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南京27中高三(上)學(xué)情分析數(shù)學(xué)試卷(16)(解析版) 題型:解答題

某工藝品廠要生產(chǎn)如圖所示的一種工藝品,該工藝品由一個(gè)圓柱和一個(gè)半球組成,要求半球的半徑和圓柱的底面半徑之比為3:2,工藝品的體積為34πcm3.設(shè)圓柱的底面直徑為4x(cm),工藝品的表面積為S(cm2).
(1)試寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)怎樣設(shè)計(jì)才能使工藝品的表面積最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第1章 導(dǎo)數(shù)及其應(yīng)用》2010年單元測試卷(2)(解析版) 題型:解答題

某工藝品廠要生產(chǎn)如圖所示的一種工藝品,該工藝品由一個(gè)圓柱和一個(gè)半球組成,要求半球的半徑和圓柱的底面半徑之比為3:2,工藝品的體積為34πcm3.設(shè)圓柱的底面直徑為4x(cm),工藝品的表面積為S(cm2).
(1)試寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)怎樣設(shè)計(jì)才能使工藝品的表面積最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省海安高級中學(xué)、南京外國語學(xué)校、金陵中學(xué)高三第三次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

某工藝品廠要生產(chǎn)如圖所示的一種工藝品,該工藝品由一個(gè)圓柱和一個(gè)半球組成,要求半球的半徑和圓柱的底面半徑之比為3:2,工藝品的體積為34πcm3.設(shè)圓柱的底面直徑為4x(cm),工藝品的表面積為S(cm2).
(1)試寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)怎樣設(shè)計(jì)才能使工藝品的表面積最小?

查看答案和解析>>

同步練習(xí)冊答案