..如圖,某小區(qū)準備在一直角圍墻內(nèi)的空地上植造“綠地”,其中,長可根據(jù)需要進行調(diào)節(jié)(足夠長),現(xiàn)規(guī)劃在內(nèi)接正方形內(nèi)種花,其余地方種草,設(shè)種草的面積與種花的面積的比,

(1)設(shè)角,將表示成的函數(shù)關(guān)系;
(2)當為多長時,有最小值,最小值是多少?

解:(1)因為,所以的面積為,,設(shè)正方形的邊長為,則由,得,解得:,則,所以
,則。
(2)因為,所以:,
當且僅當,即時,有最小值1.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余地方種花.若BC=20米,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用θ表示S1和S2
(2)當θ變化時,求“規(guī)劃合理度”取得最小值時的角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準備綠化一塊直徑為BC的半圓形空地,△ABC的內(nèi)接正方形PQRS為一水池,△ABC外的地方種草,其余地方種花.若BC=a,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用a,θ表示S1和S2;
(2)若a為定值,當θ為何值時,“規(guī)劃合理度”最小?并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題共3個小題,第1、2小題滿分各5分,第3小題滿分6分.
如圖,某小區(qū)準備在一直角圍墻ABC內(nèi)的空地上植造一塊“綠地△ABD”(點D在線段BC上),設(shè)AB長為a,BC長為b,∠BAD=θ.現(xiàn)規(guī)劃在△ABD的內(nèi)接正方形BEFG內(nèi)種花,其余地方種草,且把種草的面積S1與種花的面積S2的比值
S1
S2
稱為“草花比y”.
(1)求證:正方形BEFG的邊長為
atanθ
1+tanθ
;
(2)將草花比y表示成θ的函數(shù)關(guān)系式;
(3)當θ為何值時,y有最小值?并求出相應(yīng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某小區(qū)準備綠化一塊直徑為AB的半圓形空地,O為圓心,C為圓周上一點,CD⊥AB于D,△ACD內(nèi)為一水池,△ACD外栽種花草,若AB=100米,∠CAB=θ,y=AC+CD.
(1)試用θ表示y;
(2)求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)如圖,某小區(qū)準備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余地方種花.若BC=a,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用a,θ表示S1和S2
(2)(理)當a為定值,θ變化時,求“規(guī)劃合理度”取得最小值時的角θ的大。
(3)(文)當a為定值,θ=150時,求“規(guī)劃合理度”的值.

查看答案和解析>>

同步練習(xí)冊答案