已知曲線y=
16
x2-1與y=1+x3在x=x0處的切線互相垂直,求x0的值.
分析:先由導(dǎo)數(shù)的意義入手,再根據(jù)兩直線垂直的條件解之即可.
解答:解:對(duì)于y=
1
6
x2-1,有y′=
1
3
x,k1=y′|x=x0=
1
3
x0;
對(duì)于y=1+x3,有y′=3x2,k2=y′|x=x0=3x02
又k1k2=-1,則x03=-1,
故x0=-1.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的意義及兩直線垂直的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線y=
1
6
x2-1與y=1+x3在x=x0處的切線互相垂直,求x0的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案